A278320 Number of nX3 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.
0, 20, 236, 1678, 9714, 51229, 251892, 1144205, 4762445, 18164685, 63838081, 208288721, 635843575, 1829104046, 4989647446, 12978273537, 32338548895, 77506161543, 179299342255, 401569610694, 873025241923, 1846627291485
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1. .1..1..0. .0..0..0. .0..0..1. .0..1..0. .1..0..1. .0..0..0 ..1..1..1. .0..1..0. .0..1..0. .1..0..0. .0..1..1. .1..0..1. .1..1..0 ..1..0..1. .0..1..1. .0..0..1. .1..1..1. .0..0..1. .1..0..0. .1..1..0 ..1..0..1. .1..1..1. .1..1..1. .0..0..1. .0..1..0. .1..1..1. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A278325.
Formula
Empirical: a(n) = (1/25852016738884976640000)*n^23 + (1/102181884343418880000)*n^22 + (1/858671297003520000)*n^21 + (1259/14597412049059840000)*n^20 + (3617/810967336058880000)*n^19 + (1831/10670622842880000)*n^18 + (13746263/2688996956405760000)*n^17 + (19040863/158176291553280000)*n^16 + (101471197/45193226158080000)*n^15 + (1480973341/45193226158080000)*n^14 + (61001884543/165708495912960000)*n^13 + (3617038307/1158800670720000)*n^12 + (1537519018181/79088145776640000)*n^11 + (13469195909881/158176291553280000)*n^10 + (4270693429711/11298306539520000)*n^9 + (9457223412823/2824576634880000)*n^8 + (218151538495819/8002967132160000)*n^7 + (775352818331437/8002967132160000)*n^6 + (627425471079349/3478413818880000)*n^5 + (3995289195644399/14783258730240000)*n^4 + (6585215991983/43020065088000)*n^3 - (217394476291/586637251200)*n^2 - (1933447697/5354228880)*n
Comments