cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278332 E.g.f. equals the limit of the average of all permutations of the compositions of the functions x*exp(x^k), for k=1..n, as n increases.

This page as a plain text file.
%I A278332 #26 Nov 23 2016 16:44:05
%S A278332 1,2,9,88,905,12666,220297,4506440,104707521,2758506850
%N A278332 E.g.f. equals the limit of the average of all permutations of the compositions of the functions x*exp(x^k), for k=1..n, as n increases.
%F A278332 E.g.f.: A(x) = limit_{n->oo} (1/n!) * Sum(all permutations of compositions of functions x*exp(x^k) for k=1..n).
%e A278332 E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 905*x^5/5! + 12666*x^6/6! + 220297*x^7/7! + 4506440*x^8/8! + 104707521*x^9/9! + 2758506850*x^10/10! +...
%e A278332 Generating method.
%e A278332 Define F(n,x) as the average of the sum over all n! permutations of the compositions of x*exp(x^k) for k=1..n, then the e.g.f. of this sequence is the limit of the functions F(n,x) as n grows.
%e A278332 Examples of some initial functions F(n,x) are as follows.
%e A278332 At n=1, F(1,x) = x*exp(x).
%e A278332 At n=2, F(2,x) = (1/2!)*([x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 425*x^5/5! + 3486*x^6/6! +...
%e A278332 At n=3, F(3,x) = (1/3!)*([x*exp(x) o x*exp(x^2) o x*exp(x^3)] + [x*exp(x^2) o x*exp(x) o x*exp(x^3)] + [x*exp(x) o x*exp(x^3) o x*exp(x^2)] + [x*exp(x^3) o x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x^3) o x*exp(x)] + [x*exp(x^3) o x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 785*x^5/5! + 9426*x^6/6! +...
%e A278332 etc.
%o A278332 (PARI) /* Informal code to generate terms (ran over 100 hrs for 10 terms!) */
%o A278332 {F(n) = x*exp(x^n +x*O(x^16))}
%o A278332 {P(n) = vector(n!,k, numtoperm(n,k) )}
%o A278332 {A(n) = my(H=0); for(k=1,n!, G=x; for(j=1,n, G=subst(G,x, F(P(n)[k][j]) )); H=H+G);H/n!}
%o A278332 {Vec(serlaplace(A(6)))}
%Y A278332 Cf. A278333(n) = a(n+1)/(n+1) for n>=0.
%Y A278332 Cf. A277180, A277181.
%K A278332 nonn,more
%O A278332 1,2
%A A278332 _Paul D. Hanna_, Nov 18 2016