This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278332 #26 Nov 23 2016 16:44:05 %S A278332 1,2,9,88,905,12666,220297,4506440,104707521,2758506850 %N A278332 E.g.f. equals the limit of the average of all permutations of the compositions of the functions x*exp(x^k), for k=1..n, as n increases. %F A278332 E.g.f.: A(x) = limit_{n->oo} (1/n!) * Sum(all permutations of compositions of functions x*exp(x^k) for k=1..n). %e A278332 E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 905*x^5/5! + 12666*x^6/6! + 220297*x^7/7! + 4506440*x^8/8! + 104707521*x^9/9! + 2758506850*x^10/10! +... %e A278332 Generating method. %e A278332 Define F(n,x) as the average of the sum over all n! permutations of the compositions of x*exp(x^k) for k=1..n, then the e.g.f. of this sequence is the limit of the functions F(n,x) as n grows. %e A278332 Examples of some initial functions F(n,x) are as follows. %e A278332 At n=1, F(1,x) = x*exp(x). %e A278332 At n=2, F(2,x) = (1/2!)*([x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 425*x^5/5! + 3486*x^6/6! +... %e A278332 At n=3, F(3,x) = (1/3!)*([x*exp(x) o x*exp(x^2) o x*exp(x^3)] + [x*exp(x^2) o x*exp(x) o x*exp(x^3)] + [x*exp(x) o x*exp(x^3) o x*exp(x^2)] + [x*exp(x^3) o x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x^3) o x*exp(x)] + [x*exp(x^3) o x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 785*x^5/5! + 9426*x^6/6! +... %e A278332 etc. %o A278332 (PARI) /* Informal code to generate terms (ran over 100 hrs for 10 terms!) */ %o A278332 {F(n) = x*exp(x^n +x*O(x^16))} %o A278332 {P(n) = vector(n!,k, numtoperm(n,k) )} %o A278332 {A(n) = my(H=0); for(k=1,n!, G=x; for(j=1,n, G=subst(G,x, F(P(n)[k][j]) )); H=H+G);H/n!} %o A278332 {Vec(serlaplace(A(6)))} %Y A278332 Cf. A278333(n) = a(n+1)/(n+1) for n>=0. %Y A278332 Cf. A277180, A277181. %K A278332 nonn,more %O A278332 1,2 %A A278332 _Paul D. Hanna_, Nov 18 2016