This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278338 #9 Dec 12 2016 09:19:40 %S A278338 561,561,1105,2465,561,8911,561,46657,52633,1729,1105,2465,561,46657, %T A278338 294409,29341,512461,1105,561,1024651,2821,8911,1729,1909001,2821, %U A278338 162401,1105,2465,561,52633,46657,1729,2465,1729,10585,29341,1105,46657,1193221 %N A278338 Irregular triangle read by rows in which row n contains the first Carmichael number equal to m mod n where m is coprime to n, 0 <= m < n, ordered by m. %C A278338 The n-th row contains phi(n) terms. Wright proves that this sequence exists for each coprime m and n. %H A278338 Charles R Greathouse IV, <a href="/A278338/b278338.txt">Rows n = 1..179 of triangle, flattened</a> %H A278338 Thomas Wright, <a href="https://arxiv.org/abs/1212.5850">Infinitely many Carmichael numbers in arithmetic progressions</a>, Bulletin of the London Mathematical Society 45:5 (2013), pp. 943-952. %F A278338 a(n) is the least Carmichael number equal to A038566(n) mod A038567(n). %e A278338 561 = 0 mod 1; %e A278338 561 = 1 mod 2; %e A278338 1105 = 1 mod 3, 2465 = 2 mod 3; %e A278338 561 = 1 mod 4, 8911 = 3 mod 4; %e A278338 561 = 1 mod 5, 46657 = 2 mod 5, 52633 = 3 mod 5, 1729 = 4 mod 5; %e A278338 1105 = 1 mod 6, 2465 = 5 mod 6; %Y A278338 Cf. A002997, A038566, A038567. %K A278338 nonn,tabf %O A278338 1,1 %A A278338 _Charles R Greathouse IV_, Nov 18 2016