This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278364 #22 Dec 07 2016 11:23:40 %S A278364 5,375,46875,1640625,123046875,33837890625,10997314453125, %T A278364 1374664306640625,116846466064453125,55502071380615234375 %N A278364 A sequence showing denominators in ratios tending to the constant Pi/4 = 0.785398163397448... . %C A278364 The ratios c(n)/d(n) rapidly tend to the constant Pi/4 = 0.785398163397448... with increasing index n: abs(Pi/4 - c(1)/d(1)) > abs(Pi/4 - c(2)/d(2)) > abs(Pi/4 - c(3)/d(3)) > abs(Pi/4 - c(4)/d(4)) ..., where c(n) = A278924(n) and d(n) = A278364(n) are even and odd positive integers, respectively. All denominators d(n) are divisible by 5. %H A278364 Sanjar Abrarov, <a href="/A278364/b278364.txt">Table of n, a(n) for n = 1..49</a> %H A278364 S. M. Abrarov and B. M. Quine, <a href="https://arxiv.org/abs/1610.07713">A generalized ViƩte's-like formula for pi with rapid convergence</a>, arXiv:1610.07713 [math.GM], (2016). %F A278364 arctan(1) = I*lim_{M -> inf}Sum_{m = 1..floor(M/2) + 1}(1/(2*m - 1))*(1/(1 + 2*I)^(2*m - 1) - 1/(1 - 2*I)^(2*m - 1)) %e A278364 ------------------------------------------------ %e A278364 n c(n) d(n) %e A278364 ------------------------------------------------ %e A278364 1 4 5 %e A278364 2 296 375 %e A278364 3 36772 46875 %e A278364 4 1288688 1640625 %e A278364 5 96641548 123046875 %e A278364 6 26576092808 33837890625 %e A278364 7 8637277012172 10997314453125 %e A278364 8 1079658805128928 1374664306640625 %e A278364 9 91770997994914276 116846466064453125 %e A278364 10 43591225139846360008 55502071380615234375 %e A278364 ------------------------------------------------ %e A278364 At n = 6 the ratio c(6)/d(6) = 26576092808/33837890625 is close to Pi/4. However, at n = 10 the ratio c(10)/d(10) = 43591225139846360008/55502071380615234375 becomes more closer to Pi/4. %t A278364 x := 1; (* argument x *) %t A278364 M := 1; (* initial value for the integer M *) %t A278364 n := 1; (* index *) %t A278364 (* Note that arctan(1) = Pi/4 *) %t A278364 atan := I*Sum[(1/(2*m - 1))*(1/(1 + 2*(I/x))^(2*m - 1) - 1/(1 - 2*(I/x))^(2*m - 1)), {m, 1, Floor[M/2] + 1}]; %t A278364 sqn := {}; (* initiate the sequence *) %t A278364 AppendTo[sqn, {"Index n", "Numerators", "Denominators"}]; %t A278364 While[M <= 20, AppendTo[sqn, {n, Numerator[atan], Denominator[atan]}]; %t A278364 {M = M + 2, n++}]; %t A278364 Print[MatrixForm[sqn]] %Y A278364 Cf. A278924, A003881, A096954, A096955. %K A278364 nonn,frac %O A278364 1,1 %A A278364 _Sanjar Abrarov_, Dec 04 2016