A278379 Number of n X 2 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly three mistakes.
0, 0, 3, 40, 267, 1350, 5936, 23565, 84912, 278422, 835824, 2316601, 5980937, 14503972, 33282396, 72732358, 152195016, 306378420, 595704701, 1122541470, 2056128263, 3670127802, 6398217740, 10915088955, 18252749400, 29965289850
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0. .1..0. .1..1. .0..0. .1..1. .1..1. .1..1. .1..0. .1..0. .1..0 ..0..1. .0..1. .1..0. .1..1. .1..0. .1..1. .1..0. .0..0. .0..0. .0..1 ..0..0. .1..0. .1..1. .1..0. .1..1. .1..0. .0..1. .1..0. .1..1. .0..0 ..0..0. .0..1. .0..1. .0..1. .0..0. .0..1. .0..1. .0..1. .0..1. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A278385.
Formula
Empirical: a(n) = (1/1307674368000)*n^15 + (1/12454041600)*n^14 + (149/37362124800)*n^13 + (31/319334400)*n^12 + (1517/1306368000)*n^11 + (169/87091200)*n^10 - (73537/1828915200)*n^9 - (3971/87091200)*n^8 + (2939219/653184000)*n^7 + (521/2419200)*n^6 - (1516673/44906400)*n^5 - (19007/59875200)*n^4 + (351393113/4540536000)*n^3 + (3149/21621600)*n^2 - (5/104)*n.
Comments