This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278388 #16 Nov 24 2016 09:45:32 %S A278388 0,0,2,2,5,7,10,3,13,14,18,20,24,27,31,10,35,36,41,34,44,48,53,55,60, %T A278388 64,69,72,77,81,86,15,51,42,61,89,93,95,101,102,108,109,115,119,123, %U A278388 128,134,136,138,143,145,149,155,160,166,169,175,180,186,190,196 %N A278388 Lexicographically earliest sequence such that (i*2^a(i)) AND (j*2^a(j)) = 0 for any distinct i and j (AND stands for the bitwise AND operator). %C A278388 By analogy with A275152, this sequence can be obtained by the following algorithm: %C A278388 - we start with a half-open line of empty squares with coordinates X=0, X=1, X=2, etc., %C A278388 - for n=1, 2, 3, ...: we choose the least k such that the polyomino corresponding to n, shifted by k squares to the right, does not overlap one of the previous polyominoes. %C A278388 a(2*k+1) > a(2*k) for any k>0. %H A278388 Rémy Sigrist, <a href="/A278388/b278388.txt">Table of n, a(n) for n = 1..10000</a> %e A278388 The following table depicts the first terms, alongside the corresponding polyominoes ("X" denotes a filled square, "_" denotes an empty square): %e A278388 n n in binary a(n) n as a polyomino shifted by a(n) to the right %e A278388 -- ----------- ---- --------------------------------------------- %e A278388 1 1 0 X %e A278388 2 10 0 _X %e A278388 3 11 2 XX %e A278388 4 100 2 __X %e A278388 5 101 5 X_X %e A278388 6 110 7 _XX %e A278388 7 111 10 XXX %e A278388 8 1000 3 ___X %e A278388 9 1001 13 X__X %e A278388 10 1010 14 _X_X %e A278388 11 1011 18 XX_X %e A278388 12 1100 20 __XX %e A278388 13 1101 24 X_XX %e A278388 14 1110 27 _XXX %e A278388 15 1111 31 XXXX %e A278388 16 10000 10 ____X %e A278388 17 10001 35 X___X %e A278388 18 10010 36 _X__X %o A278388 (PARI) sumn2a = 0; for (n=1, 1 000, a=0; while (bitand(sumn2a, n<<a), a++); print1 (a ", "); sumn2a += n<<a) %Y A278388 Cf. A275152. %K A278388 nonn,base %O A278388 1,3 %A A278388 _Rémy Sigrist_, Nov 20 2016