A278390 Triangle T(n,k) read by rows: the number of independent sets of size k in the 132 core of size n.
1, 1, 1, 1, 3, 3, 1, 6, 14, 16, 1, 10, 40, 85, 105, 1, 15, 90, 295, 594, 771, 1, 21, 175, 805, 2331, 4529, 6083, 1, 28, 308, 1876, 7280, 19348, 36644, 50464, 1, 36, 504, 3906, 19404, 66780, 166608, 309537, 434493, 1, 45, 780, 7470, 45990, 197484, 621180, 1476135, 2701610, 3849715
Offset: 1
Examples
1; 1, 1; 1, 3, 3; 1, 6, 14, 16; 1, 10, 40, 85, 105; 1, 15, 90, 295, 594, 771; 1, 21, 175, 805, 2331, 4529, 6083; 1, 28, 308, 1876, 7280, 19348, 36644, 50464; 1, 36, 504, 3906, 19404, 66780, 166608, 309537, 434493;
Links
- C. Bean, M. Tannock, H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015, Theorem 3.5.
Programs
-
Mathematica
T[n_, k_] := Binomial[n-1, k] HypergeometricPFQ[{-k, 2-n, n-1}, {2, n-k}, 1]; Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] (* Jean-François Alcover, Sep 28 2019 *)
Formula
The bivariate g.f. G(x,y) satisfies G = 1+x*G+x*y*G^2/(1-y*(G-1)).
n*T(n,k) = Sum_{j=0..n-1} binomial(n,k-j)*binomial(n,j+1)*binomial(n-1+j,n-1).