cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278390 Triangle T(n,k) read by rows: the number of independent sets of size k in the 132 core of size n.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 14, 16, 1, 10, 40, 85, 105, 1, 15, 90, 295, 594, 771, 1, 21, 175, 805, 2331, 4529, 6083, 1, 28, 308, 1876, 7280, 19348, 36644, 50464, 1, 36, 504, 3906, 19404, 66780, 166608, 309537, 434493, 1, 45, 780, 7470, 45990, 197484, 621180, 1476135, 2701610, 3849715
Offset: 1

Views

Author

R. J. Mathar, Nov 20 2016

Keywords

Examples

			1;
1,  1;
1,  3,   3;
1,  6,  14,   16;
1, 10,  40,   85,   105;
1, 15,  90,  295,   594,   771;
1, 21, 175,  805,  2331,  4529,   6083;
1, 28, 308, 1876,  7280, 19348,  36644,  50464;
1, 36, 504, 3906, 19404, 66780, 166608, 309537, 434493;
		

Programs

  • Mathematica
    T[n_, k_] := Binomial[n-1, k] HypergeometricPFQ[{-k, 2-n, n-1}, {2, n-k}, 1];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] (* Jean-François Alcover, Sep 28 2019 *)

Formula

The bivariate g.f. G(x,y) satisfies G = 1+x*G+x*y*G^2/(1-y*(G-1)).
n*T(n,k) = Sum_{j=0..n-1} binomial(n,k-j)*binomial(n,j+1)*binomial(n-1+j,n-1).