cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278391 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,0,1,2}.

This page as a plain text file.
%I A278391 #27 Jun 30 2018 16:20:28
%S A278391 1,2,7,29,126,565,2583,11971,56038,264345,1254579,5983628,28655047,
%T A278391 137697549,663621741,3206344672,15525816066,75324830665,366071485943,
%U A278391 1781794374016,8684511754535,42381025041490,207055067487165,1012617403658500,4956924278927910
%N A278391 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,0,1,2}.
%C A278391 By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.
%H A278391 Andrew Howroyd, <a href="/A278391/b278391.txt">Table of n, a(n) for n = 0..200</a>
%H A278391 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%t A278391 frac[ex_] := Select[ex, Exponent[#, x] < 0&];
%t A278391 seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -2, 2}]; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
%t A278391 seq[25] (* _Jean-François Alcover_, Jun 30 2018, after _Andrew Howroyd_ *)
%o A278391 (PARI) seq(n)={my(v=vector(n), m=sum(i=-2, 2, x^i), p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018
%Y A278391 Cf. A276903, A278392, A278393, A278394, A278395, A278396, A278398.
%K A278391 nonn,walk
%O A278391 0,2
%A A278391 _David Nguyen_, Nov 20 2016