cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278392 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}.

This page as a plain text file.
%I A278392 #28 Jul 01 2018 08:37:55
%S A278392 1,3,15,87,530,3329,21316,138345,906853,5989967,39804817,265812731,
%T A278392 1782288408,11991201709,80911836411,547334588037,3710610424765,
%U A278392 25204313298581,171492983631249,1168638213247713,7974592724571446,54484621312318007,372671912259214487
%N A278392 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}.
%C A278392 By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.
%H A278392 Andrew Howroyd, <a href="/A278392/b278392.txt">Table of n, a(n) for n = 0..200</a>
%H A278392 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%t A278392 frac[ex_] := Select[ex, Exponent[#, x] < 0&];
%t A278392 seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}]; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
%t A278392 seq[23] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)
%o A278392 (PARI) seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i), p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018
%Y A278392 Cf. A276852, A278391, A278393, A278394, A278395, A278396, A278398.
%K A278392 nonn,walk
%O A278392 0,2
%A A278392 _David Nguyen_, Nov 20 2016