cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278394 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,1,2}.

This page as a plain text file.
%I A278394 #26 Jul 01 2018 08:38:05
%S A278394 1,2,5,17,58,209,761,2823,10557,39833,151147,576564,2208163,8486987,
%T A278394 32714813,126430229,489685674,1900350201,7387530575,28763059410,
%U A278394 112142791763,437774109384,1710883748796,6693281604018,26210038447737,102724200946467,402925631267151
%N A278394 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,1,2}.
%C A278394 By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.
%H A278394 Andrew Howroyd, <a href="/A278394/b278394.txt">Table of n, a(n) for n = 0..200</a>
%H A278394 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%t A278394 frac[ex_] := Select[ex, Exponent[#, x] < 0&];
%t A278394 seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -2, 2}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
%t A278394 seq[27] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)
%o A278394 (PARI) seq(n)={my(v=vector(n), m=sum(i=-2, 2, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018
%Y A278394 Cf. A276852, A278391, A278392, A278393, A278395, A278396, A278398.
%K A278394 nonn,walk
%O A278394 0,2
%A A278394 _David Nguyen_, Nov 20 2016