cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278398 Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-3,-2,-1,1,2,3}.

This page as a plain text file.
%I A278398 #26 Jul 01 2018 08:38:22
%S A278398 1,3,15,75,400,2169,11989,66985,377718,2144290,12240943,70193305,
%T A278398 404029950,2332989921,13508237399,78399357623,455959701700,
%U A278398 2656652705422,15504203678738,90614205677898,530288460288008,3107012752773125,18223934202102463,106996319699099591
%N A278398 Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-3,-2,-1,1,2,3}.
%H A278398 Andrew Howroyd, <a href="/A278398/b278398.txt">Table of n, a(n) for n = 0..200</a>
%H A278398 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%t A278398 frac[ex_] := Select[ex, Exponent[#, x] < 0&];
%t A278398 seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}] - 1; p = 1; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
%t A278398 seq[24] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)
%o A278398 (PARI) seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i)-1, p=1); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018
%Y A278398 Cf. A276902, A276852, A278391, A278394.
%K A278398 nonn,walk
%O A278398 0,2
%A A278398 _David Nguyen_, Nov 20 2016