cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278416 Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-4,-3,-2,-1,1,2,3,4}.

This page as a plain text file.
%I A278416 #18 Jul 11 2018 08:36:07
%S A278416 1,4,26,174,1231,8899,65492,487646,3664123,27723979,210946444,
%T A278416 1612394958,12371547879,95230159650,735060394986,5687343753535,
%U A278416 44096482961189,342530654187820,2665058975987628,20765913987073659,162019898098364055,1265622208055843635
%N A278416 Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-4,-3,-2,-1,1,2,3,4}.
%H A278416 Andrew Howroyd, <a href="/A278416/b278416.txt">Table of n, a(n) for n = 0..200</a>
%H A278416 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%t A278416 seq[n_] := Module[{v = Table[1, n], m = Sum[ x^i, {i, -4, 4}] - 1, p = 1}, For[i = 2, i <= n, i++, p = Expand[p*m]; p = p - Select[p, Exponent[#, x] < 0&]; v[[i]] = (p /. x -> 1)]; v];
%t A278416 seq[25] (* _Jean-François Alcover_, Jul 11 2018, after _Andrew Howroyd_ *)
%o A278416 (PARI) seq(n)={my(v=vector(n), m=sum(i=-4, 4, x^i)-1, p=1); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018
%Y A278416 Cf. A001405, A047002, A278398, A278396, A205337.
%K A278416 nonn,walk
%O A278416 0,2
%A A278416 _Michael Wallner_, Nov 21 2016