cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278419 Decimal expansion of sum of cubes of reciprocals of nonprime numbers.

This page as a plain text file.
%I A278419 #17 Feb 16 2025 08:33:37
%S A278419 1,0,2,7,2,9,4,2,6,3,8,6,0,1,5,0,7,4,8,9,7,6,6,2,4,8,4,6,8,4,5,7,4,3,
%T A278419 2,8,9,7,8,9,5,7,4,1,7,0,4,1,4,3,4,9,5,9,1,9,0,3,5,9,9,5,3,8,6,4,0,2,
%U A278419 0,6,6,1,6,2,5,8,1,8,3,5,0,2,5,5,0,8,2,1,6,7,3,0,7,2,3,6,2,6,9,7,5,9,9,4
%N A278419 Decimal expansion of sum of cubes of reciprocals of nonprime numbers.
%H A278419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZetaFunction.html">Zeta Function</a>.
%H A278419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>.
%F A278419 Sum_{n>=1} 1/n^3 - Sum_{n>=1} 1/prime(n)^3.
%F A278419 Equals zeta(3) - primezetaP(3).
%F A278419 Sum of cubes of reciprocals of composite numbers = zeta(3) - primezetaP(3) - 1 = 0.02729426386...
%e A278419 1.0272942638601507489766248468457432897895741704143495919035995386402...
%t A278419 RealDigits[Zeta[3] - PrimeZetaP[3], 10, 104][[1]]
%o A278419 (PARI) zeta(3) - sumeulerrat(1/p, 3) \\ _Amiram Eldar_, Mar 19 2021
%Y A278419 Cf. A275647.
%K A278419 nonn,cons
%O A278419 1,3
%A A278419 _Jean-François Alcover_, Nov 21 2016