cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278440 Numbers n such that A244112(n) | n.

Original entry on oeis.org

22, 777, 4444, 68868, 200000, 303030, 333000, 333333, 555555, 660000, 660660, 666666, 700000, 2332200, 3131313, 4444400, 6060600, 7007000, 7700000, 9009790, 9656955, 9885585, 11517771, 14233221, 14331231, 14333110, 14411040, 15143331, 15233221, 15331231, 15333110
Offset: 1

Views

Author

Paolo P. Lava, Nov 25 2016

Keywords

Comments

A244112(68868) = 3826 and 68868 / 3826 = 18.

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n; for n from 1 to q do a:=sort(convert(n,base,10));
    for k from 1 to trunc(nops(a)/2) do c:=a[k]; a[k]:=a[nops(a)-k+1]; a[nops(a)-k+1]:=c; od;  k:=1; b:=a[1]; c:=0;
    for j from 2 to nops(a) do if a[j]=b then k:=k+1; else d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; k:=1; b:=a[j]; fi; od;
    d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; if type(n/c,integer) then print(n); fi; od; end: P(10^99);
  • Mathematica
    Select[Range[10^6], Divisible[#, FromDigits@ Flatten@ Map[IntegerDigits, DeleteCases[#, k_ /; First@ k == 0]] &@ Reverse@ MapIndexed[{#1, (First@ #2 - 1)} &, RotateRight@ DigitCount@ #]] &] (* Michael De Vlieger, Dec 12 2016 *)

A278441 Numbers n such that n | A244112(n).

Original entry on oeis.org

1, 2, 5, 10, 22, 26, 32, 62, 91, 330, 370, 519, 575, 710, 1060, 4055, 29377, 79554, 108690, 150320, 306440, 2510048, 3605570, 14233221, 14331231, 14333110, 14509410, 15143331, 15233221, 15331231, 15333110, 16143331, 16153331, 16233221, 16331231, 16333110, 17143331
Offset: 1

Views

Author

Paolo P. Lava, Nov 25 2016

Keywords

Comments

The sequence is bounded. See comment in A278439.

Examples

			A244112(519) = 191511 and 191511 / 519 = 369.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n; for n from 1 to q do a:=sort(convert(n,base,10));
    for k from 1 to trunc(nops(a)/2) do c:=a[k]; a[k]:=a[nops(a)-k+1]; a[nops(a)-k+1]:=c; od;  k:=1; b:=a[1]; c:=0;
    for j from 2 to nops(a) do if a[j]=b then k:=k+1; else d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; k:=1; b:=a[j]; fi; od;
    d:=10*k+b; c:=c*10^(ilog10(d)+1)+d; if type(c/n,integer) then print(n); fi; od; end: P(10^99);
Showing 1-2 of 2 results.