A278453 a(n) = nearest integer to b(n) = c^(b(n-1)/(n-1)), where b(1)=0 and c is chosen such that the sequence neither explodes nor goes to 1.
0, 1, 2, 4, 6, 8, 10, 12, 15, 17, 19, 22, 25, 27, 30, 33, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 81, 84, 88, 91, 94, 98, 101, 104, 108, 111, 114, 118, 121, 125, 128, 132, 135, 139, 142, 146, 149, 153, 157, 160, 164, 167, 171, 175, 178, 182, 186, 189, 193, 197, 201, 204, 208, 212, 216
Offset: 1
Keywords
Examples
a(2) = round(5.75...^0) = round(1) = 1. a(3) = round(5.75...^(1/2)) = round(2.39...) = 2. a(4) = round(5.75...^(2.39.../3)) = round(4.05...) = 4.
Links
- Rok Cestnik, Table of n, a(n) for n = 1..1000
- Rok Cestnik, Plot of the dependence of b(1) on c
Crossrefs
Programs
-
Mathematica
b1 = 0; n = 100; acc = Round[n*1.2]; th = 1000000; c = 0; For[p = 0, p < acc, ++p, For[d = 0, d < 9, ++d, c = c + 1/10^p; bn = b1; For[i = 1, i < Round[n*1.2], ++i, bn = N[c^(bn/i), acc]; If[bn > th, Break[]]; ]; If[bn > th, { c = c - 1/10^p; Break[]; }]; ]; ]; bnlist = {N[b1]}; bn = b1; For[i = 1, i < n, ++i, bn = N[c^(bn/i), acc]; If[bn > th, Break[]]; bnlist = Append[bnlist, N[bn]]; ]; anlist = Map[Round[#] &, bnlist]
Formula
a(n) = round(n*log_c((n+1)*log_c((n+2)*log_c(...)))). - Andrey Zabolotskiy, Nov 30 2016
Comments