This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278463 #19 Jan 18 2017 21:46:34 %S A278463 1,2,2,3,9,4,4,36,44,12,5,110,355,250,48,6,300,2010,3480,1644,240,7, %T A278463 777,9625,32235,35728,12348,1440,8,1960,42056,242200,498512,390880, %U A278463 104544,10080,9,4860,173754,1605744,5466321,7745220,4581036,986256,80640,10,11880,691620,9807840,51506490,117711720,123330680,57537360,10265760,725760 %N A278463 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. %H A278463 Gheorghe Coserea, <a href="/A278463/b278463.txt">Rows n = 1..101, flattened</a>. %H A278463 F. Chapoton, F. Hivert, J.-C. Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013. %F A278463 A(x;t) = Sum {n>=1} P_n(t)*x^n/n! = (t-1)*log(1-x) - log(-x + exp(t*log(1-x))) - x. %F A278463 A278458(x;t) = serreverse(A(-x;t))(-x). %F A278463 A098558(n-1) = P_n(0), A032184(n) = P_n(1). %F A278463 A052881(n) = T(n,n-1). %e A278463 A(x;t) = x + (2*t+2)*x^2/2! + (3*t^2+9*t+4)*x^3/3! + (4*t^3+36*t^2+44*t+12)*x^4/4! + ... %e A278463 Triangle starts: %e A278463 n\k [1] [2] [3] [4] [5] [6] [7] %e A278463 [1] 1; %e A278463 [2] 2, 2; %e A278463 [3] 3, 9, 4; %e A278463 [4] 4, 36, 44, 12; %e A278463 [5] 5, 110, 355, 250, 48; %e A278463 [6] 6, 300, 2010, 3480, 1644, 240; %e A278463 [7] 7, 777, 9625, 32235, 35728, 12348, 1440; %e A278463 [8] ... %o A278463 (PARI) %o A278463 N=11; x = 'x+O('x^N); %o A278463 concat(apply(p->Vec(p), Vec(serlaplace((t-1)*log(1-x) - log(-x + exp(t*log(1-x))) - x)))) %K A278463 nonn,tabl %O A278463 1,2 %A A278463 _Gheorghe Coserea_, Jan 18 2017