cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A278052 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum k*k'/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = numerator of b(n).

Original entry on oeis.org

1, 4, 39, 52, 4069, 8573, 258017, 46639, 53371999, 113518551, 768140741, 1560819091, 242830653007, 169134016817, 38186305937387, 408881289764107, 143220706672837, 41293923006131, 9928250098118791, 10936700271572951, 97615258031147892517, 643700119549549507, 62211198375587838727
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2016

Keywords

Examples

			The fractions b(n) are 1/2, 4/3, 39/10, 52/7, 4069/252, 8573/396, 258017/6435, 46639/858, 53371999/680680, 113518551/1175720, 768140741/5290740, 1560819091/9360540, 242830653007/1029659400, 169134016817/617795640, 38186305937387/116454478140, ...
		

Crossrefs

Cf. A006843, A005728, A240877, A278046-A278051, A278561 (denominators).

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 30 do
    t1:=denom(Farey(n));
    t2:=add( t1[i]*t1[i+1]/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
    od:
    ans;
    map(numer,ans); # A278052
    map(denom,ans); # A278561
Showing 1-1 of 1 results.