This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278568 #9 Feb 03 2025 20:11:33 %S A278568 2,6,10,14,18,22,26,34,38,46,50,54,58,62,74,82,86,94,98,106,118,122, %T A278568 134,142,146,158,162,166,178,194,202,206,214,218,226,242,250,254,262, %U A278568 274,278,298,302,314,326,334,338,346,358,362,382,386,394,398,422,446,454,458,466,478 %N A278568 Twice odd prime powers. %H A278568 L. J. Corwin, <a href="/A033948/a033948.pdf">Irreducible polynomials over the integers which factor mod p for every p</a>, Unpublished Bell Labs Memo, Sep 07 1967 [Annotated scanned copy] %o A278568 (Python) %o A278568 from sympy import primepi, integer_nthroot %o A278568 def A278568(n): %o A278568 def bisection(f,kmin=0,kmax=1): %o A278568 while f(kmax) > kmax: kmax <<= 1 %o A278568 kmin = kmax >> 1 %o A278568 while kmax-kmin > 1: %o A278568 kmid = kmax+kmin>>1 %o A278568 if f(kmid) <= kmid: %o A278568 kmax = kmid %o A278568 else: %o A278568 kmin = kmid %o A278568 return kmax %o A278568 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))) %o A278568 return bisection(f,n,n)<<1 # _Chai Wah Wu_, Feb 03 2025 %Y A278568 Twice A061345. %K A278568 nonn %O A278568 1,1 %A A278568 _N. J. A. Sloane_, Nov 26 2016