This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278577 #30 Jan 09 2025 02:05:27 %S A278577 1,-24,252,-1472,4830,-16744,84480,-113643,534612,-577738,987136, %T A278577 -6905934,10661420,18643272,-25499225,-73279080,128406630,-52843168, %U A278577 -196706304,-182213314,308120442,-17125708,2687348496,-1696965207,-1596055698,-5189203740,6956478662,2699296768,-15481826884,9791485272 %N A278577 Ramanujan function tau(p) as p runs through the prime powers: a(n) = A000594(A000961(n)). %H A278577 Seiichi Manyama, <a href="/A278577/b278577.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1933 from Daniel Suteu) %H A278577 D. H. Lehmer, <a href="http://dx.doi.org/10.1215/S0012-7094-47-01436-1">The Vanishing of Ramanujan's Function tau(n)</a>, Duke Mathematical Journal, 14 (1947), pp. 429-433. %H A278577 D. H. Lehmer, <a href="/A000594/a000594.pdf">The Vanishing of Ramanujan's Function tau(n)</a>, Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy] %t A278577 Join[{1}, RamanujanTau[Select[Range[100], PrimePowerQ]]] (* _Paolo Xausa_, May 11 2024 *) %o A278577 (Python) %o A278577 from itertools import count, islice %o A278577 from sympy import primefactors, divisor_sigma %o A278577 def A278577_gen(): # generator of terms %o A278577 yield 1 %o A278577 for n in count(2): %o A278577 f = primefactors(n) %o A278577 if len(f) == 1: %o A278577 p, m = f[0], n+1>>1 %o A278577 yield (q:=n**4)*(p*n-1)//(p-1)-24*((0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*(m*divisor_sigma(m))**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + q)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) %o A278577 A278577_list = list(islice(A278577_gen(),10)) # _Chai Wah Wu_, Nov 11 2022 %o A278577 (PARI) list(lim) = apply(ramanujantau, select(x -> x == 1 || isprimepower(x), vector(lim, i, i))); \\ _Amiram Eldar_, Jan 09 2025 %Y A278577 Cf. A000594, A000961, A076847. %K A278577 sign %O A278577 1,2 %A A278577 _N. J. A. Sloane_, Nov 29 2016