This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278614 #22 Jan 19 2019 04:12:56 %S A278614 3,8,22,62,176,502,1434,4100,11726,33542,95952,274494,785266,2246484, %T A278614 6426742,18385646,52597744,150471910,430470890,1231493604 %N A278614 Sum of terms in level n of TRIP - Stern sequence associated with permutation triple (e,12,12). %H A278614 I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, <a href="https://arxiv.org/abs/1509.05239">Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences</a>, arXiv:1509.05239 [math.CO], 17 Sep 2015. %F A278614 Conjecture: G.f.: ( 3-x-5*x^2 ) / ( 1-3*x-x^2+4*x^3 ). - _R. J. Mathar_, Dec 02 2016 %p A278614 A278614T := proc(n) %p A278614 option remember; %p A278614 local an, nrecur ; %p A278614 if n = 1 then %p A278614 [1, 1, 1] ; %p A278614 else %p A278614 an := procname(floor(n/2)) ; %p A278614 if type(n, 'even') then %p A278614 # apply F0 %p A278614 [op(3, an), op(2, an),op(1, an)+ op(3, an)] ; %p A278614 else %p A278614 # apply F1 %p A278614 [op(2, an), op(1, an), op(1, an)+op(3, an)] ; %p A278614 end if; %p A278614 end if; %p A278614 end proc; %p A278614 A278614 := proc(n) %p A278614 local a, l; %p A278614 a := 0 ; %p A278614 for l from 2^n to 2^(n+1)-1 do %p A278614 L := A278614T(l) ; %p A278614 a := a+ L[1]+L[2]+L[3] ; %p A278614 end do: %p A278614 a ; %p A278614 end proc: # _R. J. Mathar_, Dec 02 2016 %t A278614 A278614T[n_] := A278614T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[2]], an[[1]] + an[[3]]}, {an[[2]], an[[1]], an[[1]] + an[[3]]}]]]; %t A278614 a[n_] := a[n] = Module[{a = 0, l, L}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, L = A278614T[l]; a = a + L[[1]] + L[[2]] + L[[3]]]; a]; %t A278614 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* _Jean-François Alcover_, Nov 20 2017, after _R. J. Mathar_ *) %Y A278614 Cf. A278612, A278613, A278615, A278616. %K A278614 nonn,more %O A278614 0,1 %A A278614 _Ilya Amburg_, Nov 23 2016 %E A278614 More terms from _R. J. Mathar_, Dec 02 2016