This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278616 #15 Jan 19 2019 04:15:43 %S A278616 3,8,21,56,148,393,1041,2761,7318,19403,51436,136366,361513,958413, %T A278616 2540831,6735996,17857733,47342548,125509476,332737401 %N A278616 Sum of terms in level n of TRIP - Stern sequence associated with permutation triple (e,13,132). %H A278616 I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, <a href="https://arxiv.org/abs/1509.05239">Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences</a>, arXiv:1509.05239 [math.CO], 17 Sep 2015. %F A278616 Conjecture: G.f.: ( -3-5*x-x^2 ) / ( -1+x+4*x^2+x^3 ). - _R. J. Mathar_, Dec 02 2016 %p A278616 A278616T := proc(n) %p A278616 option remember; %p A278616 local an, nrecur ; %p A278616 if n = 1 then %p A278616 [1, 1, 1] ; %p A278616 else %p A278616 an := procname(floor(n/2)) ; %p A278616 if type(n, 'even') then %p A278616 # apply F0 %p A278616 [op(1, an)+ op(3, an),op(3, an), op(2, an)] ; %p A278616 else %p A278616 # apply F1 %p A278616 [op(2, an), op(1, an)+ op(3, an),op(1, an)] ; %p A278616 end if; %p A278616 end if; %p A278616 end proc; %p A278616 A278616 := proc(n) %p A278616 local a, l; %p A278616 a := 0 ; %p A278616 for l from 2^n to 2^(n+1)-1 do %p A278616 L := A278616T(l) ; %p A278616 # a := a+ L[1]+L[2]+L[3] ; %p A278616 a := a+ L[2]; %p A278616 end do: %p A278616 a ; %p A278616 end proc: # _R. J. Mathar_, Dec 02 2016 %t A278616 AT[n_] := AT[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = AT[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[2]], an[[1]] + an[[3]], an[[1]] } ]]]; %t A278616 a[n_] := a[n] = Module[{a = 0, l, L}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, L = AT[l]; a = a + L[[1]] + L[[2]] + L[[3]]]; a]; %t A278616 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* _Jean-François Alcover_, Nov 22 2017, after _R. J. Mathar_ *) %Y A278616 Cf. A278612, A278613, A278614, A278615. %K A278616 nonn,more %O A278616 0,1 %A A278616 _Ilya Amburg_, Nov 23 2016 %E A278616 More terms from _R. J. Mathar_, Dec 02 2016