A278180
Square spiral in which each new term is the sum of its two largest neighbors.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 8, 15, 16, 17, 33, 35, 37, 72, 76, 80, 84, 164, 172, 180, 188, 368, 384, 401, 418, 435, 853, 888, 925, 962, 999, 1961, 2037, 2117, 2201, 2285, 2369, 4654, 4826, 5006, 5194, 5382, 5570, 10952, 11336, 11737, 12155, 12590, 13025, 13460, 26485, 27373, 28298, 29260, 30259, 31258, 32257, 63515
Offset: 1
Illustration of initial terms as a square spiral:
.
. 84----80----76-----72----37
. | |
. 164 4-----3-----2 35
. | | | |
. 172 7 1-----1 33
. | | |
. 180 8-----15----16----17
. |
. 188---368---384---401---418
.
a(21) = 188 because the sum of its two largest neighbors is 180 + 8 = 188.
a(22) = 368 because the sum of its two largest neighbors is 180 + 188 = 368.
a(23) = 384 because the sum of its two largest neighbors is 368 + 16 = 384.
a(24) = 401 because the sum of its two largest neighbors is 384 + 17 = 401.
a(25) = 418 because the sum of its two largest neighbors is 401 + 17 = 418.
a(26) = 435 because the sum of its two largest neighbors is 418 + 17 = 435.
A278645
Triangle read by rows in which each new term is the sum of its two largest neighbors in the structure.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 8, 15, 22, 29, 23, 45, 74, 103, 132, 68, 142, 245, 377, 509, 641, 210, 455, 832, 1341, 1982, 2623, 3264, 665, 1497, 2838, 4820, 7443, 10707, 13971, 17235, 2162, 5000, 9820, 17263, 27970, 41941, 59176, 76411, 93646, 7162, 16982, 34245, 62215, 104156, 163332, 239743, 333389, 427035, 520681
Offset: 1
Triangle begins:
1;
1, 2;
3, 5, 7;
8, 15, 22, 29;
23, 45, 74, 103, 132;
68, 142, 245, 377, 509, 641;
210, 455, 832, 1341, 1982, 2623, 3264;
665, 1497, 2838, 4820, 7443, 10707, 13971, 17235;
2162, 5000, 9820, 17263, 27970, 41941, 59176, 76411, 93646;
7162, 16982, 34245, 62215, 104156, 163332, 239743, 333389, 427035, 520681;
...
A365960
Sum of the 6 nearest neighbors of n in a hexagonal spiral with positive integers.
Original entry on oeis.org
27, 38, 40, 48, 56, 64, 54, 78, 86, 72, 100, 84, 114, 96, 128, 108, 142, 120, 126, 162, 138, 176, 150, 156, 196, 168, 174, 216, 186, 192, 236, 204, 210, 256, 222, 228, 234, 282, 246, 252, 302, 264, 270, 276, 328, 288, 294, 300, 354, 312, 318, 324, 380, 336, 342, 348, 406, 360, 366, 372, 378, 438, 390, 396, 402
Offset: 1
Spiral begins:
49--48--47--46--45
/ \
50 28--27--26--25 44
/ / \ \
51 29 13--12--11 24 43
/ / / \ \ \
52 30 14 4---3 10 23 42
/ / / / \ \ \ \
53 31 15 5 1---2 9 22 41
\ \ \ \ / / /
54 32 16 6---7---8 21 40
\ \ \ / /
55 33 17--18--19--20 39
\ \ /
56 34--35--36--37--38
\
57--58--59--60--61
.
The 6 nearest neighbors of 2 are 1,3,7,8,9,10. Their sum is a(2)=38.
- Eric Angelini, An hexagonal seq?, Personal blog "Cinquante signes", Sept 2023.
- Eric Angelini, An hexagonal seq?, Personal blog "Cinquante signes", Sept 2023 [Cached copy]
-
step=9; ta[x_]:=Table[12,x];f=Flatten[Table[Table[{ta[If[m==2,k-1,k]],16+2m+12k},{m,6}],{k,0,step}]][[3;;]];Join[{27,38},f+6Range[3,Length@f+2]]
Showing 1-3 of 3 results.
Comments