A278621 Number of nX2 0..2 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly one mistake.
3, 46, 357, 1952, 8518, 31605, 103546, 307087, 838936, 2138608, 5137407, 11719956, 25549096, 53493458, 108027996, 211167710, 400765157, 740380790, 1334456849, 2351234708, 4056807390, 6864961455, 11409118950, 18644841765, 29994129570
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2..0. .0..0. .1..0. .0..1. .2..0. .0..0. .1..0. .2..2. .2..2. .0..0 ..0..0. .2..2. .1..2. .1..2. .2..0. .1..0. .1..2. .1..1. .2..2. .2..1 ..2..1. .1..1. .2..2. .2..0. .2..1. .2..2. .2..1. .2..1. .2..2. .0..2 ..2..1. .2..0. .0..0. .2..0. .1..2. .0..0. .0..1. .2..2. .0..0. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A278627.
Formula
Empirical: a(n) = (1/1307674368000)*n^15 + (1/12454041600)*n^14 + (149/37362124800)*n^13 + (17/136857600)*n^12 + (3497/1306368000)*n^11 + (241/5806080)*n^10 + (865163/1828915200)*n^9 + (351247/87091200)*n^8 + (2328827/93312000)*n^7 + (698341/6220800)*n^6 + (259070737/718502400)*n^5 + (30620411/39916800)*n^4 + (8765485871/9081072000)*n^3 + (2221837/3603600)*n^2 + (4873/32760)*n
Comments