This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278638 #40 Jul 29 2020 05:08:58 %S A278638 6,12,15,18,20,21,24,28,30,33,35,36,40,42,44,45,48,52,54,55,56,60,63, %T A278638 65,66,68,70,72,75,76,77,78,80,84,85,88,90,91,95,96,99,100,102,104, %U A278638 105,108,110,112,114,115,117,119,120,126,130,132,133,135,136,138,140,143,144,145,147,150,152,153 %N A278638 Numbers n such that 1/n is a difference of Egyptian fractions with all denominators < n. %C A278638 Numbers n such that we can write 1/n = Sum_{1<=k<n} c(k)/k with all c(k) in {-1,0,1}. %C A278638 Numbers n such that A072207(n) < 2*A072207(n-1). %C A278638 If n is in the sequence, so is k*n for all k>1 (cf. A328226). %C A278638 Contains A001284, because 1/(m*k) = 1/(m*(k-m))-1/(k*(k-m)). %C A278638 Disjoint from A000961. %C A278638 2*p^k with p prime is in the sequence if and only if p=3. %C A278638 3*p^k with p prime is in the sequence if and only if p=2,5,7 or 11. %C A278638 4*p^k with p prime is in the sequence if and only if p=3,5,7,11,13,17 or 19. %C A278638 For each m that is not a term, there are only finitely many primes p such that some m*p^k is a term. [Corrected by _Max Alekseyev_, Oct 08 2019] %H A278638 Robert Israel, <a href="/A278638/b278638.txt">Table of n, a(n) for n = 1..431</a> %H A278638 Robert Israel, <a href="/A278638/a278638_1.txt">Examples for n = 1..431</a> %H A278638 Robert Israel, <a href="https://math.stackexchange.com/q/2029163">1/n as a difference of Egyptian fractions with all denominators < n</a>, Math StackExchange, 2017. %e A278638 44 is in the sequence because 1/44 = (1/12 + 1/33) - 1/11. %e A278638 4 is not in the sequence because 1/4 can't be written as the difference of sums of two subsets of {1, 1/2, 1/3}. %p A278638 N:= 200: # to get all terms <= N %p A278638 V:= Vector(N): %p A278638 f:= proc(n) option remember; %p A278638 local F,E,p,e,k,m,L,L1,i,s,t,sg,Maybe; %p A278638 global Rep; %p A278638 F:= numtheory:-factorset(n); %p A278638 if nops(F) = 1 then return false fi; %p A278638 if ormap(m -> n < m^2 and m^2 < 2*n, numtheory:-divisors(n)) then %p A278638 for m in numtheory:-divisors(n) do %p A278638 if n < m^2 and m^2 < 2*n then %p A278638 k:= n/m; Rep[n]:= [m*(k-m),-k*(k-m)]; return true %p A278638 fi %p A278638 od %p A278638 fi; %p A278638 F:= convert(F,list); %p A278638 E:= map(p -> padic:-ordp(n,p), F); %p A278638 i:= max[index](zip(`^`,F,E)); %p A278638 p:= F[i]; %p A278638 e:= E[i]; %p A278638 k:= n/p^e; %p A278638 Maybe:= false; %p A278638 for i from 3^(k-1) to 2*3^(k-1)-1 do %p A278638 L:= (-1) +~ convert(i,base,3); %p A278638 s:= 1/k - add(L[i]/i,i=1..k-1); %p A278638 if numer(s) mod p = 0 then %p A278638 Maybe:= true; %p A278638 t:= abs(s/p^e); sg:= signum(s); %p A278638 if (numer(t) <= 1 and (denom(t) < n or (denom(t) < N and V[denom(t)] = 1))) or (numer(t) = 2 and denom(t) < N and V[denom(t)] = 1) then %p A278638 L1:= subs(0=NULL, [seq(L[i]*i*p^e,i=1..k-1)]); %p A278638 if t = 0 then ; %p A278638 elif numer(t) = 1 and denom(t) < n then L1:= [op(L1),sg/t] %p A278638 elif procname(2/t) then %p A278638 L1:= ([op(L1), 2*sg/t, op(expand(sg*Rep[2/t]))]) %p A278638 else next %p A278638 fi; %p A278638 if max(abs~(L1)) < n then Rep[n]:= L1; return true fi; %p A278638 fi; %p A278638 fi %p A278638 od: %p A278638 if Maybe then printf("Warning: %d is uncertain\n",n) %p A278638 else false %p A278638 fi; %p A278638 end proc: %p A278638 for n from 6 to N do %p A278638 if V[n] = 0 and f(n) then %p A278638 V[n] := 1; %p A278638 for j from 2*n to N by n do %p A278638 if not assigned(Rep[j]) then %p A278638 V[j]:= 1; %p A278638 Rep[j] := map(`*`,Rep[n],j/n); %p A278638 f(j):= true; %p A278638 fi %p A278638 od; %p A278638 fi; %p A278638 od: %p A278638 select(t -> V[t]=1,[$6..N]); %t A278638 sol[n_] := Module[{c, cc}, cc = Array[c, n-1]; FindInstance[AllTrue[cc, -1 <= # <= 1&] && 1/n == Total[cc/Range[n-1]], cc, Integers, 1]]; %t A278638 Reap[For[n = 6, n <= 200, n++, If[sol[n] != {}, Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Jul 29 2020 *) %Y A278638 Cf. A000961, A001284, A072207. %Y A278638 Contains A005279. - _Robert G. Wilson v_, Nov 27 2016 %K A278638 nonn %O A278638 1,1 %A A278638 _Robert Israel_, Nov 24 2016