This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278678 #29 Mar 23 2020 06:46:26 %S A278678 1,4,19,94,519,3144,20903,151418,1188947,10064924,91426347,887296422, %T A278678 9164847535,100398851344,1162831155151,14198949045106,182317628906283, %U A278678 2455925711626404,34632584722468115,510251350142181470,7840215226100517191,125427339735162102104 %N A278678 Popularity of left children in treeshelves avoiding pattern T321. %C A278678 Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. Classical Françon's bijection maps bijectively treeshelves into permutations. Pattern T321 illustrated below corresponds to a treeshelf constructed from permutation 321. Popularity is the sum of a certain statistic (number of left children, in this case) over all objects of size n. %H A278678 Alois P. Heinz, <a href="/A278678/b278678.txt">Table of n, a(n) for n = 2..483</a> %H A278678 Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, <a href="https://arxiv.org/abs/1611.07793">Patterns in treeshelves</a>, arXiv:1611.07793 [cs.DM], 2016. %H A278678 J. Françon, <a href="http://www.numdam.org/item/?id=ITA_1976__10_3_35_0">Arbres binaires de recherche : propriétés combinatoires et applications</a>, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50 %F A278678 E.g.f.: (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))^2. %F A278678 a(n) = (n+1)*e(n) - e(n+1), where e(n) is the n-th Euler number (see A000111). %F A278678 Asymptotic: a(n) ~ 8*(Pi-2) / Pi^3 * n^2 * (2/Pi)^n. %e A278678 Treeshelves of size 3: %e A278678 1 1 1 1 1 1 %e A278678 / \ / \ / \ / \ %e A278678 2 2 / \ 2 \ / 2 %e A278678 / \ 2 2 3 3 %e A278678 3 3 \ / %e A278678 3 3 %e A278678 Pattern T321: %e A278678 1 %e A278678 / %e A278678 2 %e A278678 / %e A278678 3 %e A278678 Treeshelves of size 3 that avoid pattern T321: %e A278678 1 1 1 1 1 %e A278678 \ / \ / \ / \ %e A278678 2 / \ 2 \ / 2 %e A278678 \ 2 2 3 3 %e A278678 3 \ / %e A278678 3 3 %e A278678 Popularity of left children is 4. %p A278678 b:= proc(u, o) option remember; `if`(u+o=0, 1, %p A278678 add(b(o-1+j, u-j), j=1..u)) %p A278678 end: %p A278678 a:= n-> (n+1)*b(n+1, 0)-b(n+2, 0): %p A278678 seq(a(n), n=2..25); # _Alois P. Heinz_, Oct 27 2017 %t A278678 b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]]; %t A278678 a[n_] := (n+1)*b[n+1, 0] - b[n+2, 0]; %t A278678 Table[a[n], {n, 2, 25}] (* _Jean-François Alcover_, Nov 06 2017, after _Alois P. Heinz_ *) %o A278678 (Python) %o A278678 # by Taylor expansion %o A278678 from sympy import * %o A278678 from sympy.abc import z %o A278678 h = (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))**2 %o A278678 NUMBER_OF_COEFFS = 20 %o A278678 coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs() %o A278678 coeffs.reverse() %o A278678 # and remove first coefficient 1 that corresponds to O(n**k) %o A278678 coeffs.pop(0) %o A278678 print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))]) %Y A278678 Cf. A000110, A000111, A000142, A001286, A008292, A131178, A278677, A278679. %K A278678 nonn %O A278678 2,2 %A A278678 _Sergey Kirgizov_, Nov 26 2016