cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278682 Number of non-equivalent ways to place 3 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 7, 45, 225, 709, 1974, 4524, 9614, 18382, 33425, 56895, 93447, 146715, 224280, 331814, 480844, 679724, 945099, 1288737, 1733725, 2296065, 3006762, 3886960, 4977210, 6304794, 7921589, 9862099, 12191459, 14952567, 18225900, 22064010, 26564952, 31792280
Offset: 1

Views

Author

Heinrich Ludwig, Nov 26 2016

Keywords

Comments

A fers is a leaper [1, 1].
Rotations and reflections of placements are not counted. If they are to be counted, see A201244.

Examples

			There are 7 ways to place 3 non-attacking ferses "X" on a 3 X 3 board, rotations and reflections being ignored
   XXX   XX.   X.X   ...   X..   X..   X..
   ...   ...   ...   XXX   X.X   ...   ...
   ...   ..X   .X.   ...   ...   XX.   X.X
		

Crossrefs

Cf. A201244, A232567 (2 ferses), A278683 (4 ferses), A278684 (5 ferses), A278685 (6 ferses), A278686 (7 ferses), A278687, A278688.

Programs

  • Mathematica
    Table[Boole[n > 2] ((n^6 - 15 n^4 + 32 n^3 + 14 n^2 - 116 n + 96) + Boole[OddQ@ n] (8 n^3 - 9 n^2 - 20 n + 9))/48, {n, 34}] (* Michael De Vlieger, Nov 30 2016 *)
  • PARI
    concat(vector(2), Vec(x^3*(7 + 24*x + 83*x^2 + 66*x^3 + 75*x^4 - 15*x^6 - 2*x^7 + 2*x^8) / ((1 - x)^7*(1 + x)^4) + O(x^40))) \\ Colin Barker, Dec 07 2016

Formula

a(n) = ((n^6 - 15*n^4 + 32*n^3 + 14*n^2 - 116*n + 96) + IF(MOD(n, 2) = 1, 8*n^3 - 9*n^2 - 20*n + 9))/48.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
From Colin Barker, Dec 07 2016: (Start)
a(n) = (n^6 - 15*n^4 + 32*n^3 + 14*n^2 - 116*n + 96)/48 for n even.
a(n) = (n^6 - 15*n^4 + 40*n^3 + 5*n^2 - 136*n + 105)/48 for n odd.
G.f.: x^3*(7 + 24*x + 83*x^2 + 66*x^3 + 75*x^4 - 15*x^6 - 2*x^7 + 2*x^8) / ((1 - x)^7*(1 + x)^4).
(End)