This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278692 #18 Dec 06 2023 13:57:24 %S A278692 4,14,49,171,596,2077,7238,25223,87897,306303,1067403,3719680, %T A278692 12962320,45171020,157411717,548547468,1911575138,6661446313, %U A278692 23213770727,80895217952,281903201529,982374694626,3423373822671,11929753885009,41572739387791,144872448909191,504850696923520,1759300875378480 %N A278692 Pisot sequence T(4,14). %H A278692 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A278692 a(n) = floor(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14. %F A278692 Conjectures: (Start) %F A278692 G.f.: (4 - 2*x + x^2 - x^3)/(1 - 4*x + 2*x^2 - x^3 + x^4). %F A278692 a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4). (End) %t A278692 RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 27}] %o A278692 (PARI) first(n)=my(v=vector(n+1)); v[1]=4; v[2]=14; for(i=3,#v, v[i]=v[i-1]^2\v[i-2]); v \\ _Charles R Greathouse IV_, Nov 28 2016 %o A278692 (Python) %o A278692 from itertools import islice %o A278692 def A278692_gen(): # generator of terms %o A278692 a, b = 4, 14 %o A278692 yield from (a,b) %o A278692 while True: %o A278692 a, b = b, b**2//a %o A278692 yield b %o A278692 A278692_list = list(islice(A278692_gen(),30)) # _Chai Wah Wu_, Dec 06 2023 %Y A278692 Cf. A008776 for definitions of Pisot sequences. %Y A278692 Cf. A010919, A019495, A022031. %Y A278692 Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)), A277084 (Pisot sequence L(4,14)). %K A278692 nonn,easy %O A278692 0,1 %A A278692 _Ilya Gutkovskiy_, Nov 28 2016