A278696 Primes p such that every suffix of the ternary (base-3) representation of p is a prime.
2, 5, 11, 23, 29, 59, 83, 167, 173, 191, 491, 509, 569, 653, 659, 677, 1481, 1487, 1949, 2027, 2111, 4397, 4457, 4547, 4943, 5051, 5861, 6323, 6563, 13127, 13151, 13313, 13613, 13691, 13781, 13799, 15149, 15233, 17519, 17579, 17669, 39371, 39857, 40847, 40853, 43913, 44417, 52517, 53147, 59051
Offset: 1
Examples
569 is in the sequence, as 569=210002_3 and its base-3 suffixes are 10002_3=83 and 2_3=2, both of which are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A278694.
Programs
-
Maple
F[1]:= [2]: for m from 2 to 11 do F[m]:= [op(F[m-1]),op(select(isprime, [seq(seq(i*3^ (m-1)+x,x=F[m-1]),i=[1,2])]))] od: F[11]; # Robert Israel, Jan 22 2020
Comments