cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278742 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in base 10.

Original entry on oeis.org

1, 2, 3, 10, 11, 12, 20, 30, 100, 110, 200, 300, 1000, 1100, 2000, 2100, 3000, 10000, 20000, 30000, 100000, 110000, 120000, 200000, 300000, 1000000, 1100000, 2000000, 3000000, 10000000, 11000000, 20000000, 21000000, 30000000, 100000000, 200000000, 300000000
Offset: 1

Views

Author

Rémy Sigrist, Nov 27 2016

Keywords

Examples

			The first terms, alongside their partial sums, are:
n     a(n)     Partial sums (A280730)
--    -----    ----------------------
1         1              1
2         2              3
3         3              6
4        10             16
5        11             27
6        12             39
7        20             59
8        30             89
9       100            189
10      110            299
11      200            499
12      300            799
13     1000           1799
14     1100           2899
15     2000           4899
16     2100           6999
17     3000           9999
--    -----          -----
18    10000          19999
19    20000          39999
20    30000          69999
		

Crossrefs

Programs

  • Mathematica
    f[a_] := Function[w, Function[s, Total@ Map[PadLeft[#, s] &, w]]@ Max@ Map[Length, w]]@ Map[IntegerDigits, a]; g[n_] := FixedPoint[Function[k, If[Total@ Drop[RotateRight@ DigitCount@ k, 4] > 0, k + (6 * 10^(Position[#, 4][[1, 1]] - 1)) &@ Reverse@ IntegerDigits@ k, k]], n]; a = {1}; Do[If[n <= 17, k = g[Max@ a + 1]; While[Max@ f@ Join[a, {k}] > 9, k = g[k + 1]], k = 10^4 * a[[n - 17]]]; AppendTo[a, k], {n, 2, 37}]; a (* Michael De Vlieger, Dec 18 2016 *)
  • PARI
    a(n)=if(n>17, a(n-17)*10000, [1, 2, 3, 10, 11, 12, 20, 30, 100, 110, 200, 300, 1000, 1100, 2000, 2100, 3000][n]) \\ Charles R Greathouse IV, Nov 27 2016
    
  • PARI
    Vec(x*(1 +2*x +3*x^2 +10*x^3 +11*x^4 +12*x^5 +20*x^6 +30*x^7 +100*x^8 +110*x^9 +200*x^10 +300*x^11 +1000*x^12 +1100*x^13 +2000*x^14 +2100*x^15 +3000*x^16) / (1 -10000*x^17) + O(x^50)) \\ Colin Barker, Jan 10 2017

Formula

a(n+17) = 10000*a(n) for any n>0.
a(17k+1) = 10^(4k), k >= 0. - N. J. A. Sloane, Jan 06 2017
G.f.: x*(1 +2*x +3*x^2 +10*x^3 +11*x^4 +12*x^5 +20*x^6 +30*x^7 +100*x^8 +110*x^9 +200*x^10 +300*x^11 +1000*x^12 +1100*x^13 +2000*x^14 +2100*x^15 +3000*x^16) / (1 -10000*x^17). - Colin Barker, Jan 10 2017