This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278764 #6 Apr 28 2019 14:14:33 %S A278764 5,13,33,83,208,521,1305,3268,8183,20490,51306,128467,321673,805448, %T A278764 2016788,5049902,12644616,31661270,79277695,198506027,497045767, %U A278764 1244569236,3116317824,7803050645,19538315026,48922629292,122498979756,306729222415,768029383352,1923094020999,4815298338536 %N A278764 Pisot sequence T(5,13). %H A278764 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A278764 a(n) = floor(a(n-1)^2/a(n-2)), a(0) = 5, a(1) = 13. %F A278764 Conjectures: (Start) %F A278764 G.f.: (5 - 2*x + 4*x^2 - 5*x^3 + x^4 - 2*x^5)/((1 - x)*(1 - 2*x - 3*x^3 - x^5)). %F A278764 a(n) = 3*a(n-1) - 2*a(n-2) + 3*a(n-3) - 3*a(n-4) + a(n-5) - a(n-6). (End) %t A278764 RecurrenceTable[{a[0] == 5, a[1] == 13, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 30}] %Y A278764 Cf. A008776 for definitions of Pisot sequences. %Y A278764 Cf. A020749, A020750. %Y A278764 Cf. A001519 (with offset 3 appears to be Pisot sequences E(5,13), L(5,13), P(5,13)) %K A278764 nonn,easy %O A278764 0,1 %A A278764 _Ilya Gutkovskiy_, Nov 28 2016