cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278772 Number of n X 2 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.

Original entry on oeis.org

0, 2, 20, 117, 503, 1750, 5209, 13751, 33000, 73282, 152581, 300872, 566293, 1023724, 1786462, 3021818, 4971616, 7978746, 12521114, 19254543, 29066411, 43142066, 63046335, 90822745, 129113400, 181302810, 251689347, 345688410, 470071817
Offset: 1

Views

Author

R. H. Hardin, Nov 28 2016

Keywords

Examples

			Some solutions for n=4:
..0..0. .0..1. .1..1. .1..1. .1..1. .0..1. .0..1. .0..1. .1..1. .1..0
..0..1. .0..0. .1..0. .1..0. .1..0. .0..0. .1..0. .1..0. .1..1. .0..1
..0..0. .1..0. .1..0. .0..1. .0..0. .0..1. .1..1. .1..1. .1..0. .1..0
..0..1. .1..0. .0..0. .0..1. .1..1. .1..1. .1..0. .0..0. .0..1. .0..0
		

Crossrefs

Column 2 of A278778.

Formula

Empirical: a(n) = (1/3628800)*n^10 + (1/80640)*n^9 + (1/3780)*n^8 + (17/8064)*n^7 + (1513/172800)*n^6 + (167/11520)*n^5 + (12329/362880)*n^4 + (197/4032)*n^3 - (2167/50400)*n^2 - (11/168)*n.
Conjectures from Colin Barker, Feb 10 2019: (Start)
G.f.: x^2*(2 - 2*x + 7*x^2 - 14*x^3 + 12*x^4 - 5*x^5 + x^6) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)