A278772 Number of n X 2 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.
0, 2, 20, 117, 503, 1750, 5209, 13751, 33000, 73282, 152581, 300872, 566293, 1023724, 1786462, 3021818, 4971616, 7978746, 12521114, 19254543, 29066411, 43142066, 63046335, 90822745, 129113400, 181302810, 251689347, 345688410, 470071817
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .0..1. .1..1. .1..1. .1..1. .0..1. .0..1. .0..1. .1..1. .1..0 ..0..1. .0..0. .1..0. .1..0. .1..0. .0..0. .1..0. .1..0. .1..1. .0..1 ..0..0. .1..0. .1..0. .0..1. .0..0. .0..1. .1..1. .1..1. .1..0. .1..0 ..0..1. .1..0. .0..0. .0..1. .1..1. .1..1. .1..0. .0..0. .0..1. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A278778.
Formula
Empirical: a(n) = (1/3628800)*n^10 + (1/80640)*n^9 + (1/3780)*n^8 + (17/8064)*n^7 + (1513/172800)*n^6 + (167/11520)*n^5 + (12329/362880)*n^4 + (197/4032)*n^3 - (2167/50400)*n^2 - (11/168)*n.
Conjectures from Colin Barker, Feb 10 2019: (Start)
G.f.: x^2*(2 - 2*x + 7*x^2 - 14*x^3 + 12*x^4 - 5*x^5 + x^6) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)