cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278773 Number of nX3 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.

This page as a plain text file.
%I A278773 #4 Nov 28 2016 08:17:21
%S A278773 0,20,266,1972,10784,48501,189595,665212,2138149,6384894,17895624,
%T A278773 47447755,119746565,289136007,670787381,1500673676,3247602855,
%U A278773 6817025467,13912884597,27665820296,53701416899,101922145950,189427147850
%N A278773 Number of nX3 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.
%C A278773 Column 3 of A278778.
%H A278773 R. H. Hardin, <a href="/A278773/b278773.txt">Table of n, a(n) for n = 1..210</a>
%F A278773 Empirical: a(n) = (1/121645100408832000)*n^19 + (1/800296713216000)*n^18 + (193/2134124568576000)*n^17 + (1/241416806400)*n^16 + (173/1280987136000)*n^15 + (26111/7846046208000)*n^14 + (12107647/188305108992000)*n^13 + (354047/362125209600)*n^12 + (113721193/9656672256000)*n^11 + (12542321/109734912000)*n^10 + (1257109487/1379524608000)*n^9 + (1427797621/241416806400)*n^8 + (1397907414289/47076277248000)*n^7 + (598789045909/5884534656000)*n^6 + (543697174847/2615348736000)*n^5 + (191422487/1005903360)*n^4 - (3436687523/44108064000)*n^3 - (46017833/154378224)*n^2 - (3115337/19399380)*n
%e A278773 Some solutions for n=4
%e A278773 ..0..0..1. .0..1..0. .1..1..0. .1..1..1. .0..1..1. .1..1..1. .1..0..1
%e A278773 ..0..0..1. .0..0..0. .0..1..0. .1..1..1. .1..0..0. .1..0..1. .1..0..0
%e A278773 ..1..0..1. .1..0..1. .0..1..1. .0..1..0. .0..0..0. .1..1..1. .1..0..0
%e A278773 ..0..0..1. .1..1..0. .1..1..0. .1..0..1. .1..1..1. .1..1..1. .1..1..1
%Y A278773 Cf. A278778.
%K A278773 nonn
%O A278773 1,2
%A A278773 _R. H. Hardin_, Nov 28 2016