cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278807 T(n,k)=Number of nXk 0..2 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order.

Original entry on oeis.org

3, 6, 6, 10, 22, 10, 15, 63, 63, 15, 21, 154, 322, 154, 21, 28, 336, 1439, 1439, 336, 28, 36, 672, 5767, 12958, 5767, 672, 36, 45, 1254, 20972, 110455, 110455, 20972, 1254, 45, 55, 2211, 69834, 870473, 2179956, 870473, 69834, 2211, 55, 66, 3718, 214774, 6275546
Offset: 1

Views

Author

R. H. Hardin, Nov 28 2016

Keywords

Comments

Table starts
..3....6......10.........15............21...............28.................36
..6...22......63........154...........336..............672...............1254
.10...63.....322.......1439..........5767............20972..............69834
.15..154....1439......12958........110455...........870473............6275546
.21..336....5767.....110455.......2179956.........41299256..........725674326
.28..672...20972.....870473......41299256.......1976588468........89730161098
.36.1254...69834....6275546.....725674326......89730161098.....10811999412826
.45.2211..214774...41370842...11698232451....3776527762052...1224101415304069
.55.3718..615120..250517485..172994405326..146582077597322.128795068372302728
.66.6006.1653047.1402100369.2356249442222.5255148833158068

Examples

			Some solutions for n=4 k=4
..1..0..0..0. .1..0..0..0. .1..1..1..0. .1..1..0..0. .1..1..0..0
..1..1..1..0. .1..1..1..0. .2..0..0..2. .2..1..2..2. .2..1..2..2
..1..2..1..0. .1..2..0..1. .2..1..0..0. .2..2..1..1. .2..2..1..0
..2..0..1..2. .1..2..0..1. .2..1..0..2. .2..2..2..2. .2..2..1..1
		

Crossrefs

Diagonal is A229770.
Column 1 is A000217(n+1).
Column 2 is A257200(n+1).

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (3/2)*n + 1
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 16]
k=4: [polynomial of degree 44]