A278808 Decimal expansion of b(1) in the sequence b(n+1) = c^(b(n)/n) A278448, where c=2 and b(1) is chosen such that the sequence neither explodes nor goes to 1.
2, 8, 7, 1, 8, 8, 0, 8, 2, 7, 0, 4, 5, 4, 5, 4, 6, 5, 8, 8, 9, 0, 5, 5, 1, 7, 5, 5, 0, 4, 5, 7, 5, 0, 4, 5, 8, 6, 5, 6, 5, 2, 5, 1, 1, 8, 4, 7, 9, 6, 5, 6, 5, 6, 7, 9, 2, 9, 9, 5, 4, 0, 1, 0, 8, 4, 0, 4, 5, 7, 9, 6, 8, 3, 0, 8, 9, 2, 7, 0, 3, 6, 0, 1, 8, 2, 8, 6, 3, 8, 1, 8, 6, 7, 6, 7, 8, 7, 5, 4, 8, 0, 8, 4, 3
Offset: 1
Examples
2.87188082704545465889055175504575045865652511847965...
Links
- Rok Cestnik, Table of n, a(n) for n = 1..1000
- Rok Cestnik, Plot of the dependence of b(1) on c
Crossrefs
Programs
-
Mathematica
c = 2; n = 100; acc = Round[n*1.2]; th = 1000000; b1 = 0; For[p = 0, p < acc, ++p, For[d = 0, d < 9, ++d, b1 = b1 + 1/10^p; bn = b1; For[i = 1, i < Round[n*1.2], ++i, bn = N[c^(bn/i), acc]; If[bn > th, Break[]]; ]; If[bn > th, { b1 = b1 - 1/10^p; Break[]; }]; ]; ]; N[b1,n] RealDigits[Fold[Log2[#1*#2] &, 1, Reverse@Range[2, 144]], 10, 111][[1]] (* Robert G. Wilson v, Dec 01 2016 *)
Formula
log_2(2*log_2(3*log_2(4*log_2(...)))). - Andrey Zabolotskiy, Nov 30 2016
Comments