A278809 Decimal expansion of b(1) in the sequence b(n+1) = c^(b(n)/n) A278449, where c=3 and b(1) is chosen such that the sequence neither explodes nor goes to 1.
1, 0, 8, 2, 8, 7, 3, 6, 0, 9, 5, 2, 0, 7, 3, 8, 6, 9, 4, 0, 8, 2, 8, 5, 0, 3, 1, 3, 4, 5, 3, 1, 0, 0, 8, 0, 2, 5, 7, 8, 6, 3, 4, 5, 4, 7, 8, 5, 3, 8, 5, 0, 6, 4, 3, 2, 8, 8, 4, 7, 8, 2, 1, 6, 8, 0, 6, 9, 2, 2, 7, 8, 8, 9, 5, 2, 9, 9, 5, 5, 7, 4, 7, 0, 6, 8, 1, 4, 4, 8, 7, 8, 6, 2, 3, 9, 2, 4, 4, 3, 1, 1, 5, 4, 5, 9, 9, 1, 8, 9, 2, 4, 3, 8, 8, 4, 0, 6, 3, 6, 2, 6, 1, 3, 5, 9, 3, 4, 0, 0
Offset: 1
Examples
1.08287360952073869408285031345310080257863454785385...
Links
- Rok Cestnik, Table of n, a(n) for n = 1..1000
- Rok Cestnik, Plot of the dependence of b(1) on c
Crossrefs
Programs
-
Mathematica
c = 3; n = 100; acc = Round[n*1.2]; th = 1000000; b1 = 0; For[p = 0, p < acc, ++p, For[d = 0, d < 9, ++d, b1 = b1 + 1/10^p; bn = b1; For[i = 1, i < Round[n*1.2], ++i, bn = N[c^(bn/i), acc]; If[bn > th, Break[]]; ]; If[bn > th, { b1 = b1 - 1/10^p; Break[]; }]; ]; ]; N[b1,n] RealDigits[ Fold[ Log[3, #1*#2] &, 1, Reverse@ Range[2, 160]], 10, 111][[1]] (* Robert G. Wilson v, Dec 02 2016 *)
Formula
log_3(2*log_3(3*log_3(4*log_3(...)))). - Andrey Zabolotskiy, Dec 01 2016
Comments