A278812 Decimal expansion of b(1) in the sequence b(n+1) = c^(b(n)/n) A278452, where c = e = 2.71828... and b(1) is chosen such that the sequence neither explodes nor goes to 1.
1, 3, 6, 7, 9, 0, 1, 2, 6, 1, 7, 9, 7, 0, 8, 5, 1, 6, 9, 6, 6, 8, 9, 0, 9, 1, 7, 5, 7, 6, 0, 4, 8, 8, 5, 3, 8, 3, 8, 4, 6, 2, 4, 5, 2, 6, 1, 8, 2, 1, 3, 5, 7, 7, 0, 4, 1, 4, 6, 0, 3, 7, 1, 3, 8, 6, 3, 3, 1, 7, 9, 4, 4, 8, 8, 0, 1, 5, 6, 8, 6, 5, 6, 6, 7, 1, 5, 8, 8, 6, 8, 3, 7, 2, 7, 7, 3, 7, 4, 9, 5, 6, 2, 4, 7, 7, 4, 3, 3, 4, 9, 8, 1, 9, 3, 3, 3, 6, 1, 7, 1, 9, 6, 1, 1, 1, 3, 2, 2, 8
Offset: 1
Examples
1.36790126179708516966890917576048853838462452618213...
Links
- Rok Cestnik, Table of n, a(n) for n = 1..1000
- Rok Cestnik, Plot of the dependence of b(1) on c
Crossrefs
Programs
-
Mathematica
c = E; n = 100; acc = Round[n*1.2]; th = 1000000; b1 = 0; For[p = 0, p < acc, ++p, For[d = 0, d < 9, ++d, b1 = b1 + 1/10^p; bn = b1; For[i = 1, i < Round[n*1.2], ++i, bn = N[c^(bn/i), acc]; If[bn > th, Break[]]; ]; If[bn > th, { b1 = b1 - 1/10^p; Break[]; }]; ]; ]; N[b1,n] RealDigits[ Fold[ Log[#1*#2] &, 1, Reverse@ Range[2, 160]], 10, 111][[1]] (* Robert G. Wilson v, Dec 02 2016 *)
Formula
log(2*log(3*log(4*log(...)))). - Andrey Zabolotskiy, Nov 30 2016
Comments