A278846 Number of unimodular 2 X 2 matrices having entries in {0,1,...,n} with no entry repeated.
0, 0, 0, 0, 0, 8, 8, 40, 48, 80, 88, 152, 160, 232, 264, 304, 344, 448, 480, 608, 648, 720, 784, 944, 968, 1104, 1176, 1304, 1376, 1576, 1616, 1840, 1944, 2080, 2184, 2352, 2424, 2688, 2816, 2984, 3072, 3368, 3440, 3760, 3896, 4064, 4224, 4576, 4664, 4984, 5120
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1000 (terms 0..241 from Indranil Ghosh)
Crossrefs
Cf. A210000 (where the matrix entries can be repeated).
Programs
-
Maple
df:= proc(n) local count, c,d,q,av,bc,a,b; count:= 0: for d from 1 to n-1 do av:= {$1..n-1} minus {d}; for q in [-1,1] do bc:= n*d+q; for b in numtheory:-divisors(bc) intersect av do c:= bc/b; if c < b and member(c,av) then count:=count+8 fi; od od od; count end proc: ListTools:-PartialSums(map(df, [$0..100])); # Robert Israel, Nov 29 2016
-
Mathematica
df[n_] := Module[{count = 0, c, d, q, av, bc, a, b}, Do[av = Range[n - 1] ~Complement~ {d}; Do[bc = n d + q; Do[c = bc/b; If[c < b && MemberQ[av, c], count += 8], {b, Divisors[bc] ~Intersection~ av}], {q, {-1 , 1}}], {d, 1, n - 1}]; count]; df /@ Range[0, 100] // Accumulate (* Jean-François Alcover, Jul 29 2020, after Robert Israel *)
-
Python
def a(n): s=0 for a in range(0,n+1): for b in range(0,n+1): for c in range(0,n+1): for d in range(0,n+1): if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d): if abs(a*d-b*c)==1: s+=1 return s print([a(n) for n in range(0, 52)]) # Indranil Ghosh, Nov 29 2016
Comments