A278849 Number of nX2 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly three mistakes.
0, 0, 1, 25, 239, 1486, 7072, 27828, 94720, 287298, 793024, 2023332, 4828941, 10881820, 23327332, 47861324, 94458120, 180072500, 332769135, 597905471, 1047219371, 1791963626, 3001600740, 4930040800, 7951993320, 12612734550
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1. .1..1. .0..1. .0..1. .1..1. .0..1. .1..1. .1..1. .1..1. .0..0 ..0..1. .0..1. .1..1. .0..0. .0..0. .1..1. .0..1. .0..1. .1..0. .1..1 ..1..0. .0..0. .1..0. .1..1. .0..1. .0..1. .1..1. .1..1. .0..1. .0..1 ..0..1. .1..1. .0..1. .0..1. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A278855.
Formula
Empirical: a(n) = (1/87178291200)*n^14 + (1/958003200)*n^13 + (43/958003200)*n^12 + (893/958003200)*n^11 + (863/87091200)*n^10 + (11/358400)*n^9 + (28333/609638400)*n^8 + (32029/87091200)*n^7 + (13219/21772800)*n^6 - (119603/10886400)*n^5 - (291547/59875200)*n^4 + (883781/19958400)*n^3 + (127307/30270240)*n^2 - (467/13860)*n
Comments