This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278912 #7 Feb 16 2025 08:33:37 %S A278912 1,0,0,1,0,1,1,0,1,1,1,2,1,1,2,2,2,3,2,2,4,3,4,4,3,5,5,5,6,5,6,8,7,8, %T A278912 9,8,10,11,10,12,12,13,15,14,16,17,17,19,20,20,22,24,24,26,27,28,31, %U A278912 31,33,36,35,39,42,41,45,47,48,53,54,55,60,61,65,69,69,74,78,80,85,88,90,96,101,104,109,113,117,124,128,133,139 %N A278912 Expansion of Product_{k>=1} 1/(1 - x^prime(prime(k))). %C A278912 Number of partitions of n into primes with prime subscripts. %H A278912 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A278912 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePartition.html">Prime Partition</a> %H A278912 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A278912 G.f.: Product_{k>=1} 1/(1 - x^A006450(k)). %F A278912 G.f.: Product_{k>=1} 1/(1 - x^A000040(A000040(k))). %e A278912 a(11) = 2 because we have [3,3,5] and [11], where 3 = prime(2) = prime(prime(1)), 5 = prime(3) = prime(prime(2)) and 11 = prime(5) = prime(prime(3)). %t A278912 nmax=90; CoefficientList[Series[1/Product[1 - x^Prime[Prime[k]], {k, 1, nmax}], {x, 0, nmax}], x] %Y A278912 Cf. A000040, A000607, A006450. %K A278912 nonn,easy %O A278912 0,12 %A A278912 _Ilya Gutkovskiy_, Nov 30 2016