This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278913 #29 Jul 20 2025 15:03:51 %S A278913 2,4,16,64,9765625,4096,65536,262144, %T A278913 1471383076677527699142172838322885948765175969, %U A278913 10264895304762966931257013446474591264089923314972889033759201,1073741824,18701397461209715023927088008788055619800417991632621566284510161 %N A278913 a(n) is the smallest number k with prime sum of divisors such that tau(k) = n-th prime. %C A278913 tau(n) = A000005(n) = the number of divisors of n. %C A278913 a(11) = 1073741824; a(n) > A023194(10000) = 5896704025969 for n = 9, 10 and n >= 12. %H A278913 Davin Park, <a href="/A278913/b278913.txt">Table of n, a(n) for n = 1..50</a> %F A278913 a(n) = A123487(n)^(prime(n)-1). - _Davin Park_, Dec 10 2016 %e A278913 a(3) = 16 because 16 is the smallest number with prime values of sum of divisors (sigma(16) = 31) such that tau(16) = 5 = 3rd prime. %t A278913 A278913[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1) (* _Davin Park_, Dec 28 2016 *) %o A278913 (Magma) A278913:=func<n|exists(r){k:k in[1..10000000] | IsPrime(SumOfDivisors(k)) and NumberOfDivisors(k) eq NthPrime(n)} select r else 0>; [A278913(n): n in[1..8]]; %o A278913 (PARI) a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k++); k;} \\ _Michel Marcus_, Dec 03 2016 %Y A278913 Cf. A000005, A000203, A023194, A278914. %K A278913 nonn %O A278913 1,1 %A A278913 _Jaroslav Krizek_, Nov 30 2016 %E A278913 More terms from _Davin Park_, Dec 08 2016