cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278921 Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1 and (q-p)^(q+1) + 1.

Original entry on oeis.org

10, 15, 65, 221, 493, 671, 1147, 1219, 3439, 5069, 12209, 14893, 20737, 24503, 30083, 49813, 61937, 77507, 91277, 97297, 100337, 102719, 109283, 109783, 113521, 132427, 144301, 178991, 204851, 244523, 245041, 246559, 257149, 258749, 312167, 339497, 397219, 433091, 434617, 461893, 465763
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

q is always a Pythagorean prime (A002144).
Semiprimes of the form p*q where p < q such that q divides p^(q+1) + k and (q-p)^(q+1) + k:
k = 1: (this sequence);
k = 2: 6, 33, 119, 247, 451, ...
k = 3: 14, 35, 91, 341, ...
k = 4: 39, 145, 371, ...
For every positive odd number q (whether prime or not), every integer p in 0..q, and every integer k, if q divides p^(q+1) + k, then it necessarily follows that q also divides (q-p)^(q+1) + k; thus, this sequence could be more simply defined as "Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1." - Jon E. Schoenfield, Dec 07 2016

Crossrefs

Programs

  • Mathematica
    Take[#, 41] &@ Union@ Flatten@ Table[Function[q, q Select[Prime@ Range@ n, Function[p, And[Divisible[p^(q + 1) + 1, q], Divisible[(q - p)^(q + 1) + 1, q]]]]]@ Prime@ n, {n, 600}] (* Michael De Vlieger, Dec 02 2016 *)
  • PARI
    list(lim)=my(v=List()); forprime(q=5,lim\2, if(q%4>2, next); forprime(p=2,min(lim\q,q-2), if(Mod(p,q)^(q+1)==-1 && Mod(q-p,q)^(q+1)==-1, listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Dec 02 2016