A278925 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^3 + j^3.
1, 2, 113, 38736, 46311652, 143820883800, 966462062838180, 12412328008727861760, 278484670746890475310656, 10197331743850942940587152000, 577793817845799602600135280168000, 48534819511412868687827815575204633600, 5834998526939444017550860154062183732711680
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..36
Programs
-
Maple
with(LinearAlgebra): a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^3+j^3))): seq(a(n), n=0..16);
-
Mathematica
Flatten[{1, Table[Permanent[Table[i^3+j^3, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
PARI
{a(n) = matpermanent(matrix(n, n, i, j, i^3+j^3))} for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
Formula
a(n) ~ c * d^n * n!^4 / n^(3/2), where d = 6.538385468679... and c = 0.84959670006...