A278989 a(n) is the number of words of length n over an alphabet of size 4 that are in standard order and which have the property that every letter that appears in the word is repeated.
0, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 16777, 80928, 379347, 1726375, 7654817, 33219630, 141692075, 596122477, 2480969257, 10237751324, 41963944275, 171103765747, 694775280993, 2812004330666, 11352134320523, 45736973060601, 183981143571721, 739167464021912, 2966826380664595, 11899055223201855
Offset: 0
Keywords
Links
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
Crossrefs
A row of the array in A278987.
Formula
Conjectures from Colin Barker, Nov 25 2017: (Start)
G.f.: x^2*(1 - 19*x + 159*x^2 - 776*x^3 + 2474*x^4 - 5498*x^5 + 8993*x^6 - 11471*x^7 + 11815*x^8 - 9478*x^9 + 5348*x^10 - 1848*x^11 + 288*x^12) / ((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)).
a(n) = 20*a(n-1) - 175*a(n-2) + 882*a(n-3) - 2835*a(n-4) + 6072*a(n-5) - 8777*a(n-6) + 8458*a(n-7) - 5204*a(n-8) + 1848*a(n-9) - 288*a(n-10) for n > 14.
(End)