A279000 Numbers of the form (11*h+j)*11^k-1 for h,k in N and j in {1,3,4,5,9}.
0, 2, 3, 4, 8, 10, 11, 13, 14, 15, 19, 22, 24, 25, 26, 30, 32, 33, 35, 36, 37, 41, 43, 44, 46, 47, 48, 52, 54, 55, 57, 58, 59, 63, 66, 68, 69, 70, 74, 77, 79, 80, 81, 85, 88, 90, 91, 92, 96, 98, 99, 101, 102, 103, 107, 110, 112, 113, 114, 118, 120, 121, 123, 124, 125, 129
Offset: 1
Keywords
Links
- Hao Fu and G.-N. Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370 [math.NT], 2016.
Programs
-
Maple
isA279000 := proc(n) local x,dgs11,i ; x := n+1 ; dgs11 := convert(x,base,11) ; for i from 1 to nops(dgs11) do if op(i,dgs11) in {1,3,4,5,9} then return true; elif op(i,dgs11) in {2,6,7,8,10} then return false; end if; end do: false ; end proc: for n from 0 to 200 do if isA279000(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 15 2016
-
Mathematica
okQ[n_] := MatchQ[IntegerDigits[n+1, 11], {_, 1 | 3 | 4 | 5 | 9, 0...}]; Select[Range[0, 200], okQ] (* Jean-François Alcover, Feb 25 2018, after R. J. Mathar *)
-
Python
from sympy import integer_log def A279000(n): def f(x): return n-1+sum(((m:=(x+1)//11**i)-2)//11+(m-6)//11+(m-7)//11+(m-8)//11+(m-10)//11+5 for i in range(integer_log(x+1,11)[0]+1)) m, k = n-1, f(n-1) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 23 2025
Extensions
Corrected by Lars Blomberg (10 added, 21 removed, 32 added...), Dec 15 2016
Comments