A279010 Alternating Jacobsthal triangle A_3(n,k) read by rows.
1, 1, 1, 3, 0, 1, 3, 3, -1, 1, 9, 0, 4, -2, 1, 9, 9, -4, 6, -3, 1, 27, 0, 13, -10, 9, -4, 1, 27, 27, -13, 23, -19, 13, -5, 1, 81, 0, 40, -36, 42, -32, 18, -6, 1, 81, 81, -40, 76, -78, 74, -50, 24, -7, 1, 243, 0, 121, -116, 154, -152, 124, -74, 31, -8, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 0, 1; 3, 3, -1, 1; 9, 0, 4, -2, 1; 9, 9, -4, 6, -3, 1; 27, 0, 13, -10, 9, -4, 1; 27, 27, -13, 23, -19, 13, -5, 1; 81, 0, 40, -36, 42, -32, 18, -6, 1; 81, 81, -40, 76, -78, 74, -50, 24, -7, 1; 243, 0, 121, -116, 154, -152, 124, -74, 31, -8, 1; ...
Links
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
Crossrefs
Programs
-
Mathematica
A[n_, 0] := 3^Floor[n/2]; A[n_, k_] /; (k<0 || t>n) = 0; A[n_, n_] = 1; A[n_, k_] := A[n, k] = A[n-1, k-1] - A[n-1, k]; Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 12 2018 *)