This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279015 #23 Jan 20 2023 21:57:51 %S A279015 0,0,4,10,20,34,52,73,100,128,162,199,240,285,334,387,444,505,570,639, %T A279015 712,789,870,955,1044,1137,1234,1335,1440,1549,1662,1779,1900,2025, %U A279015 2154,2287,2424,2565,2710,2859,3012,3169,3330,3495,3664,3837,4014,4195,4380,4569 %N A279015 Greatest possible number of diagonals of a polyhedron having n faces. %C A279015 Also the greatest possible number of diagonals of a simple polyhedron with n faces. In other words, a polyhedron with n faces having the greatest possible number of diagonals must be a simple one. %H A279015 Colin Barker, <a href="/A279015/b279015.txt">Table of n, a(n) for n = 4..1000</a> %H A279015 D. Bremner, V. Klee, <a href="http://dx.doi.org/10.1006/jcta.1998.2953">Inner Diagonals of Convex Polytopes</a>, Journal of Combinatorial Theory, Series A, Volume 87, Issue 1, July 1999, Pages 175-197. %H A279015 Vladimir Letsko, <a href="http://www-old.fizmat.vspu.ru/doku.php?id=marathon:problem_219">Mathematical Marathon, Problem 219</a> (in Russian) %H A279015 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A279015 a(n) = 2*n^2 - 21*n + 64 for n=12 or n>=14. %F A279015 From _Colin Barker_, Dec 05 2016: (Start) %F A279015 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8. %F A279015 G.f.: x^6*(4 - 2*x + 2*x^2 - x^5 + 3*x^6 - 5*x^7 + 5*x^8 - 3*x^9 + x^10) / (1 - x)^3. %F A279015 (End) %e A279015 a(6)=4 because 6 is the greatest possible number of diagonals of a hexahedron. %p A279015 F:=n->piecewise(4<=n and n<=5,0,6<=n and n<=10,2*n^2-20*n+52,n=11,73,n=13,128,n=12 or n>=14,2*n^2-21*n+64); %t A279015 Drop[#, 4] &@ CoefficientList[Series[x^6*(4 - 2 x + 2 x^2 - x^5 + 3 x^6 - 5 x^7 + 5 x^8 - 3 x^9 + x^10)/(1 - x)^3, {x, 0, 53}], x] (* _Michael De Vlieger_, Dec 05 2016 *) %o A279015 (PARI) concat(vector(2), Vec(x^6*(4 - 2*x + 2*x^2 - x^5 + 3*x^6 - 5*x^7 + 5*x^8 - 3*x^9 + x^10) / (1 - x)^3 + O(x^30))) \\ _Colin Barker_, Dec 05 2016 %Y A279015 Cf. A000944, A279019, A279022. %K A279015 nonn,easy %O A279015 4,3 %A A279015 _Vladimir Letsko_, Dec 03 2016