This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279026 #26 Dec 22 2016 22:12:25 %S A279026 1,1,2,4,6,10,15,23,36,59,93,148,234,372,592,939,1490,2366,3754,5959, %T A279026 9460,15017,23838,37841,60068,95352,151362 %N A279026 Size of blocks of 1's in the second column of Catalan numbers written in binary and left-aligned. %C A279026 What combinatorial problem is this the answer to? - _N. J. A. Sloane_, Dec 21 2016 %C A279026 Appears to be strictly increasing for n > 1. - _Chai Wah Wu_, Dec 22 2016 %e A279026 Left-align the binary representation of the Catalan numbers: %e A279026 1 %e A279026 1 %e A279026 10 %e A279026 101 %e A279026 1110 %e A279026 101010 %e A279026 10000100 %e A279026 110101101 %e A279026 10110010110 %e A279026 The first column is all 1's, by definition. %e A279026 The next column appears to have blocks of 1's and 0's. %e A279026 The sizes of the blocks make this sequence. %e A279026 The values of this column may be generated with the MMA code: %e A279026 Table[If[2^Floor[Log2[CatalanNumber[n]]] + 2^(Floor[Log2[CatalanNumber[n]]] - 1) < CatalanNumber[n], 1, 0], {n, 1, 1000}]. %t A279026 Num = 10000; %t A279026 T = Table[If[2^Floor[Log2[CatalanNumber[n]]] +2^(Floor[Log2[CatalanNumber[n]]] - 1) < CatalanNumber[n], 1, 0], {n, 1, Num}]; S = {}; %t A279026 For[i = 1, i < Num, i++, j = 0; If[T[[i]] == 1, While[T[[i]] == 1, i++; j++]; AppendTo[S, j];];]; S %Y A279026 Cf. A000108. %K A279026 nonn,base %O A279026 1,3 %A A279026 _Benedict W. J. Irwin_, Dec 12 2016 %E A279026 a(21)-a(27) from _Chai Wah Wu_, Dec 22 2016