This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279031 #33 Mar 28 2018 03:58:00 %S A279031 1,-3,0,-1,15,-3,8,-42,6,-83,81,-39,316,-90,420,-603,363,-1656,625, %T A279031 -2556,2877,-2599,7818,-3483,13886,-11049,17040,-31493,20196,-63876, %U A279031 39244,-96453,105891,-120431,243333,-164100,440873,-327387,643968,-765115,840207 %N A279031 Expansion of Product_{k>0} 1/(1 + x^k)^(k*3). %H A279031 Seiichi Manyama, <a href="/A279031/b279031.txt">Table of n, a(n) for n = 0..10000</a> %F A279031 a(n) ~ (-1)^n * exp(-1/4 + 2^(-5/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) * A^3 * Zeta(3)^(1/12) / (2^(2/3) * 3^(5/12) * sqrt(Pi) * n^(7/12)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 13 2017 %F A279031 G.f.: exp(3*Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, Mar 27 2018 %Y A279031 Product_{k>0} 1/(1 + x^k)^(k*m): A027346 (m=-3), A255528 (m=1), A278710 (m=2), this sequence (m=3), A279411 (m=4). %K A279031 sign %O A279031 0,2 %A A279031 _Seiichi Manyama_, Apr 11 2017