This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279033 #8 Dec 07 2016 10:20:34 %S A279033 1,1,2,2,3,4,5,6,7,1,9,1,10,2,13,2,14,4,18,4,19,8,24,8,25,13,32,14,33, %T A279033 21,42,22,43,33,54,35,55,49,69,53,70,72,87,78,88,103,1,109,112,1,110, %U A279033 145,1,136,160,137,200,3,168,220,2,169,275,4,206,303,3 %N A279033 Irregular triangular array: T(n,i) = number of strict partitions of n having crossover index k; see Comments. %C A279033 Suppose that P = [p(1),p(2),...,p(k)] is a partition of n, where p(1) >= p(2) >= ... >= p(k). The crossover index of P is the least h such that p(1) + ... + p(h) > = n/2. Equivalently for k > 1, p(1) + ... + p(h) >= p(h+1) + ... + p(k). A strict partition is a partition into distinct parts. The n-th row sum is the number of strict partitions of n, A000009. Column 1 counts "non-squashing partitions", as in A088567. %C A279033 First 32 rows (indexed by column 1): %C A279033 1... 1 %C A279033 2... 1 %C A279033 3... 2 %C A279033 4... 2 %C A279033 5... 3 %C A279033 6... 4 %C A279033 7... 5 %C A279033 8... 6 %C A279033 9... 7 1 %C A279033 10... 9 1 %C A279033 11... 10 2 %C A279033 12... 13 2 %C A279033 13... 14 4 %C A279033 14... 18 4 %C A279033 15... 19 8 %C A279033 16... 24 8 %C A279033 17... 25 13 %C A279033 18... 32 14 %C A279033 19... 33 21 %C A279033 20... 42 22 %C A279033 21... 43 33 %C A279033 22... 54 35 %C A279033 23... 55 49 %C A279033 24... 69 53 %C A279033 25... 70 72 %C A279033 26... 87 78 %C A279033 27... 88 103 1 %C A279033 28... 109 112 1 %C A279033 29... 110 145 1 %C A279033 30... 136 160 %C A279033 31... 137 200 3 %C A279033 32... 168 220 3 %t A279033 p[n_] := p[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A279033 t[n_, k_] := t[n, k] = p[n][[k]]; %t A279033 q[n_, k_] := q[n, k] = Select[Range[50], Sum[t[n, k][[i]], {i, 1, #}] >= n/2 &, 1]; %t A279033 u[n_] := u[n] = Flatten[Table[q[n, k], {k, 1, Length[p[n]]}]]; %t A279033 c1[n_, k_] := c1[n, k] = Count[u[n], k]; %t A279033 m[n_] := -1 + Min[Flatten[Position[Table[c1[n, k], {k, 1, n + 1}], 0]]] %t A279033 u = Table[c1[n, k], {n, 1, 50}, {k, 1, m[n]}] %t A279033 TableForm[u] (* A279033 array *) %t A279033 Flatten[u] (* A279033 sequence *) %Y A279033 Cf. A000009, A088567, A276468. %K A279033 nonn,easy,tabf %O A279033 1,3 %A A279033 _Clark Kimberling_, Dec 04 2016