This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279034 #47 Dec 21 2016 12:47:53 %S A279034 0,2,16,32,76,114,204,276,428,542,772,940,1264,1494,1928,2232,2792, %T A279034 3178,3880,4360,5220,5802,6836,7532,8756,9574,11004,11956,13608,14702, %U A279034 16592,17840,19984,21394,23808,25392,28092,29858,32860,34820,38140,40302,43956 %N A279034 The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle. %C A279034 All terms in the sequence are even, because the rectangles are symmetric. A single move consists of a movement by one row and one column. %H A279034 Isaac S. Friedman, <a href="/A279034/b279034.txt">Table of n, a(n) for n = 1..998</a> %H A279034 Isaac S. Friedman, <a href="/A279034/a279034.txt">Java program to find a single term</a> %F A279034 Empirical g.f.: 2*x^2*(1 + 7*x + 6*x^2 + 8*x^3 + 3*x^4 + x^5) / ((1 - x)^4*(1 + x)^3*(1 + x^2)). - _Colin Barker_, Dec 04 2016 %F A279034 Empirical: a(n) = (13/24)*(n^3) + ((3*(n mod 2) + 1)/8)*(n^2) - ((28 - 9*(n mod 2))/24)*(n) - (n mod 4)/4. %e A279034 a(3) = (13/24)(3^3) + ((3*(3 mod 2)+1)/8)*(3^2) - ((28-9*(3 mod 2))/24)*(3) - (3 mod 4)/4 = (13/24)(3^3) + (1/2)(3^2) - (19/24)(3) - (3/4) = 16. %e A279034 Illustration of a(3): %e A279034 . %e A279034 . 3 columns %e A279034 . +---+---+---+ %e A279034 . 4 | 0 | 3 | 0 | 0 + 3 + 0 = 3 %e A279034 . +---+---+---+ %e A279034 . r | 2 | 1 | 2 | 2 + 1 + 2 = 5 %e A279034 . o +---+---+---+ %e A279034 . w | 2 | 1 | 2 | 2 + 1 + 2 = 5 %e A279034 . s +---+---+---+ %e A279034 . | 0 | 3 | 0 | 0 + 3 + 0 = 3 %e A279034 . +---+---+---+ %e A279034 . %e A279034 Adding the sums for the rows, a(3) = 3 + 5 + 5 + 3 = 16. %t A279034 CoefficientList[ Series[( 2(x + 7x^2 + 6x^3 + 8x^4 + 3x^5 + x^6))/((x -1)^4 (x + 1)^3 (x^2 +1)), {x, 0, 45}], x] (* or *) %t A279034 LinearRecurrence[{1, 2, -2, 0, 0, -2, 2, 1, -1}, {0, 2, 16, 32, 76, 114, 204, 276, 428}, 45] (* _Robert G. Wilson v_, Dec 13 2016 *) %o A279034 (Java) See Friedman link %K A279034 nonn %O A279034 1,2 %A A279034 _Isaac S. Friedman_, Dec 03 2016