cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279034 The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle.

This page as a plain text file.
%I A279034 #47 Dec 21 2016 12:47:53
%S A279034 0,2,16,32,76,114,204,276,428,542,772,940,1264,1494,1928,2232,2792,
%T A279034 3178,3880,4360,5220,5802,6836,7532,8756,9574,11004,11956,13608,14702,
%U A279034 16592,17840,19984,21394,23808,25392,28092,29858,32860,34820,38140,40302,43956
%N A279034 The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle.
%C A279034 All terms in the sequence are even, because the rectangles are symmetric. A single move consists of a movement by one row and one column.
%H A279034 Isaac S. Friedman, <a href="/A279034/b279034.txt">Table of n, a(n) for n = 1..998</a>
%H A279034 Isaac S. Friedman, <a href="/A279034/a279034.txt">Java program to find a single term</a>
%F A279034 Empirical g.f.: 2*x^2*(1 + 7*x + 6*x^2 + 8*x^3 + 3*x^4 + x^5) / ((1 - x)^4*(1 + x)^3*(1 + x^2)). - _Colin Barker_, Dec 04 2016
%F A279034 Empirical: a(n) = (13/24)*(n^3) + ((3*(n mod 2) + 1)/8)*(n^2) - ((28 - 9*(n mod 2))/24)*(n) - (n mod 4)/4.
%e A279034 a(3) = (13/24)(3^3) + ((3*(3 mod 2)+1)/8)*(3^2) - ((28-9*(3 mod 2))/24)*(3) - (3 mod 4)/4 = (13/24)(3^3) + (1/2)(3^2) - (19/24)(3) - (3/4) = 16.
%e A279034 Illustration of a(3):
%e A279034 .
%e A279034 .       3 columns
%e A279034 .     +---+---+---+
%e A279034 .   4 | 0 | 3 | 0 |  0 + 3 + 0 = 3
%e A279034 .     +---+---+---+
%e A279034 .   r | 2 | 1 | 2 |  2 + 1 + 2 = 5
%e A279034 .   o +---+---+---+
%e A279034 .   w | 2 | 1 | 2 |  2 + 1 + 2 = 5
%e A279034 .   s +---+---+---+
%e A279034 .     | 0 | 3 | 0 |  0 + 3 + 0 = 3
%e A279034 .     +---+---+---+
%e A279034 .
%e A279034 Adding the sums for the rows, a(3) = 3 + 5 + 5 + 3 = 16.
%t A279034 CoefficientList[ Series[( 2(x + 7x^2 + 6x^3 + 8x^4 + 3x^5 + x^6))/((x -1)^4 (x + 1)^3 (x^2 +1)), {x, 0, 45}], x] (* or *)
%t A279034 LinearRecurrence[{1, 2, -2, 0, 0, -2, 2, 1, -1}, {0, 2, 16, 32, 76, 114, 204, 276, 428}, 45] (* _Robert G. Wilson v_, Dec 13 2016 *)
%o A279034 (Java) See Friedman link
%K A279034 nonn
%O A279034 1,2
%A A279034 _Isaac S. Friedman_, Dec 03 2016